Friction stir welding unites reliability, affordability

May 21, 2012 By Jennifer Stanfield
Four aluminum domes, created using innovative friction stir welding processes, are seen in this overhead view of the Marshall Space Flight Center Advanced Welding and Manufacturing Facility. Credit: NASA/MSFC/David Higginbotham

(Phys.org) -- NASA's next heavy-lift launch vehicle, the Space Launch System, is moving further in development faster thanks to proven advanced technologies like friction stir welding.

Friction stir welding uses frictional heating combined with forging pressure to produce high-strength bonds virtually free of defects. The welding process transforms metals from a solid state into a "plastic-like" state, and uses a rotating pin tool to soften, stir and forge a bond between two metal plates to form a uniform welded joint -- a vital requirement of next-generation space hardware.

"NASA is leveraging key technologies like welding from the Space Shuttle Program to design and manufacture the Space ," said Todd May, SLS program manager at the Marshall Space Flight Center in Huntsville, Ala. "NASA's advancements in friction stir welding techniques used to manufacture the external tanks give SLS a head start in development while reducing program cost, increasing reliability and creating hardware with superior mechanical properties. This technology directly supports SLS' program tenets of safety, reliability and sustainability."

In the mid 1990s, following use of a new lightweight aluminum lithium alloy created to reduce the weight of the external tanks, Marshall engineers found the new alloy difficult, complex and costly to weld. Engineers researched and adapted the innovative friction stir welding process for use on the 153.8-feet-tall orange space shuttle external tanks used to hold propellant for the space shuttle main engines. The process reduced manufacturing costs, increased reliability and significantly lowered the number of defects to yield a nearly perfect weld.

The implemented the new weld technique in its manufacturing process of the in 2001. The first friction stir welded tank flew in 2009. Since then, NASA has developed multiple tools and advanced processes to enhance its welding capabilities on aerospace hardware.

"State-of-the-art friction stir welding will continue to be a critical technology as we continue to learn how to build more efficient space vehicles with less expensive materials," said Jon Street, welding and manufacturing lead in the Material & Processes Laboratory at the Marshall Center. "Friction stir welding yields higher strength metals with higher reliability and predictability. It also increases efficiency by reducing the number of weld passes that traditional fusion arc welding requires. In addition, it offers safer, more environmentally friendly operations than traditional welding by not creating hazards such as welding fumes, radiation or high voltage. SLS will benefit from all of these advancements."

Today, the Boeing Company of Huntsville, Ala., is developing the SLS core and upper stage using the friction stir welding process. The core stage will tower over 200 feet tall with a diameter of 27.5 feet and store cryogenic liquid hydrogen and liquid oxygen to feed RS-25 engines. The upper stage, powered by J-2X engines, will be used on the evolved SLS and share common attributes with the core stage such as its outer diameter, material composition, subsystem components and tooling. Both stages will be built at NASA's Michoud Assembly Facility in New Orleans with state-of-the-art manufacturing equipment and tooling -- including one of the largest robotic friction stir welding systems in the world.

"NASA’s strategy to affordably achieve a 2017 first flight for its new depends a great deal on the ability to leverage existing technologies and expertise, while taking advantage of the new science and innovations necessary to achieve extended flights of discovery," said Jim Chilton, Boeing Exploration Launch Systems vice president. "Friction stir welding technology meets all of those challenges."

Explore further: Curiosity brushes 'Bonanza king' target anticipating fourth red planet rock drilling

add to favorites email to friend print save as pdf

Related Stories

Deep space capsule comes alive with first weld

Sep 12, 2011

(PhysOrg.com) -- Construction began this week on the first new NASA spacecraft built to take humans to orbit since space shuttle Endeavour left the factory in 1991, and marked a significant milestone in carrying ...

Future naval force may sail with the strength of titanium

Apr 04, 2012

Steel may have met its match: An Office of Naval Research (ONR)-funded project will produce a full-size ship hull section made entirely with marine-grade titanium using a welding innovation that could help bring titanium ...

Hybrid welding process developed

Dec 18, 2006

U.S. scientists say they've developed a hybrid process involving the use of a laser in friction-stir welding to extend the application to more materials.

NASA moves shuttle engines from Kennedy to Stennis

Jan 16, 2012

(PhysOrg.com) -- The relocation of the RS-25D space shuttle main engine inventory from Kennedy Space Center's Engine Shop in Cape Canaveral, Fla., is underway. The RS-25D flight engines, repurposed for NASA's ...

Recommended for you

Australian amateur Terry Lovejoy discovers new comet

10 hours ago

It's confirmed! Australian amateur astronomer Terry Lovejoy just discovered his fifth comet, C/2014 Q2 (Lovejoy). He found it August 17th using a Celestron C8 fitted with a CCD camera at his roll-off roof ...

Students see world from station crew's point of view

Aug 19, 2014

NASA is helping students examine their home planet from space without ever leaving the ground, giving them a global perspective by going beyond a map attached to a sphere on a pedestal. The Sally Ride Earth ...

Mars deep down

Aug 19, 2014

Scarring the southern highlands of Mars is one of the Solar System's largest impact basins: Hellas, with a diameter of 2300 km and a depth of over 7 km.

User comments : 0