Frequency stabilization in nonlinear nanomechanical oscillators

May 28, 2012

Using Center for Nanoscale Materials (CNM) expertise in the design and fabrication of micro- and nanoscale devices, a new strategy for engineering low-frequency noise oscillators capitalizes on the intrinsic nonlinear phenomena of micro- and nanomechanical resonators. A fundamental limitation of such resonators was addressed by a team of researchers from the Nanofabrication & Devices Group working with CNICT, Argentina.

Mechanical oscillators are an essential component of nearly every electronic system requiring a frequency reference for timekeeping or synchronization. They are also widely used in frequency-shift-based sensors of mass, force, and magnetic field. Unfortunately, as the dimensions of vibrating semiconductor structures are reduced to the micro- and nanoscale, their dynamic response at the amplitudes needed for operation frequently becomes nonlinear.

In addition, large displacement instabilities and excessive frequency noise considerably degrade their performance. In this regime, unlike the linear case, the resonant frequency has a strong dependence with the oscillation amplitude. This increases frequency noise of the oscillator considerably, and thus, the benefits of operating at higher amplitudes are undone.

The limitation was overcome by coupling two different vibrational modes through an internal resonance, where the energy exchange between modes is such that the resonance of one mode absorbs the amplitude and frequency fluctuations of the other. This effectively acts as a stabilizing mechanical negative feedback loop.

The result demonstrates that very low-frequency noise performance is possible in the nonlinear regime and provides a path to replace quartz oscillators with nanoelectromechanical systems technology.

Explore further: TUNAMOS project uses magnetic nano-oscillator to solve limitations of integrated oscillators in wireless devices

More information: D. Antonio, et al. (CNM), "Frequency stabilization in nonlinear micromechanical oscillators," Nature Communications, 3, 806 (2012) [doi: 10.1038/ncomms1813]

Related Stories

New sensor exploits traditional weakness of nano devices

February 12, 2010

By taking advantage of a phenomenon that until now has been a virtual showstopper for electronics designers, a team led by Oak Ridge National Laboratory's Panos Datskos is developing a chemical and biological sensor with ...

Exotic behavior when mechanical devices reach the nanoscale

May 15, 2011

Most mechanical resonators damp (slow down) in a well-understood linear manner, but ground-breaking work by Prof. Adrian Bachtold and his research group at the Catalan Institute of Nanotechnology has shown that resonators ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.