Finnish researchers find explanation for sliding friction

May 29, 2012

Friction is a key phenomenon in applied physics, whose origin has been studied for centuries. Until now, it has been understood that mechanical wear-resistance and fluid lubrication affect friction, but the fundamental origin of sliding friction has been unknown.

Dr. Lasse Makkonen, Principal Scientist at VTT Technical Research Centre of Finland, has now presented an explanation for the origin of sliding friction between solid objects. According to his theory, the amount of friction depends on the of the materials in question.

Friction has a substantial effect on many everyday phenomena, such as . Makkonen's model is the first to enable quantitative calculation of the friction coefficient of materials.

According to Makkonen's theory, the amount of friction is related to the material's surface energy. Friction originates in nanoscale contacts, as the result of new surface formation. The theory explains the generation of frictional force and frictional heating in dry contact. It can be applied in calculating the friction coefficient of various material combinations. The model also enables the manipulation of friction by selecting certain surface materials or materials used in lubrication layers, on the basis of the surface energy between them.

Makkonen's theory on sliding was published in the journal AIP Advances of the . The research was funded by the Academy of Finland and the Jenny and Antti Wihuri Foundation.

Explore further: Shaking Reduces Friction

More information: A thermodynamic model of sliding friction: aipadvances.aip.org/resource/1/aaidbi/v2/i1/p012179_s1

Related Stories

Shaking Reduces Friction

July 8, 2005

Lateral vibrations can control friction at the nanoscale, researchers reported in the 1 July 2005 issue of Physical Review Letters.

'Heftier' atoms reduce friction at the nanoscale

November 1, 2007

A research team led by a University of Pennsylvania mechanical engineer has discovered that friction between two sliding bodies can be reduced at the molecular, or nanoscale, level by changing the mass of the atoms at the ...

Recommended for you

Seeing quantum motion

August 28, 2015

Consider the pendulum of a grandfather clock. If you forget to wind it, you will eventually find the pendulum at rest, unmoving. However, this simple observation is only valid at the level of classical physics—the laws ...

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.