Creating energy from light and air

May 08, 2012
An artistic representation of submicron lipid vesicles filled with fluorescent molecules, reproduced by permission of Lars J C Jeuken and The Royal Society of Chemistry from Soft Matter, 2011, 7, 49-52, DOI: 10.1039/C0SM01016B

Researchers from the University are studying how to make electricity from electrodes coated in bacteria, and other living cells, using light or hydrogen as the fuel.

The aim of the research long-term is to develop more efficient , seen as the future of electronics.  Because biofuel cells are powered by readily available biological materials, they have the potential to be used indefinitely when electricity is required at places where is it not possible to replace a battery or recharge them.

Most biofuel cells create electricity using enzymes that process glucose, but the Leeds research will focus on bacterial enzymes that can harness light or hydrogen gas to create energy.  The work is funded by a £1.42m grant from the European Research Council.

Lead researcher, Dr Lars Jeuken, from the Faculty of Biological Sciences, says: "Technology that creates an electrical signal from a biochemical reaction is already in commercial use, for example in blood glucose biosensors.  However, developing an efficient biofuel cell that can create sufficient electricity for general use has proved much more difficult.  This is mainly because the systems developed to date have only limited control of how inorganic materials and biological molecules interact.

"Our research combines state of-the-art surface physics, colloid and organic chemistry, membrane biology and electrochemistry to develop with complete control of the biochemical interactions needed to create .  We now want to apply this to membrane proteins to generate energy from and ."

Dr Jeuken's research will also contribute to a new Interdisciplinary Centre for Microbial Fuel Cells (ICMFC), set up jointly between the Universities of Leeds, Sheffield and York.  The Centre will bring together chemists from York, biophysicists such as Dr Jeuken from Leeds and engineers from Sheffield, to work together on improving the performance of microbial fuel cells, using a combination of synthetic biology and nanoengineering.

Explore further: Environmentally compatible organic solar cells

add to favorites email to friend print save as pdf

Related Stories

Printable biofuel cell developed in Finland

Nov 08, 2006

An enzyme-based power source is a viable source of electricity for the rapidly proliferating RFID tags used in the medical sector and logistics. Applications include plasters containing a memory circuit and ...

Recommended for you

Environmentally compatible organic solar cells

5 hours ago

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

Floating nuclear plants could ride out tsunamis

6 hours ago

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

6 hours ago

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Ikea buys wind farm in Illinois

Apr 15, 2014

These days, Ikea is assembling more than just furniture. About 150 miles south of Chicago in Vermilion County, Ill., the home goods giant is building a wind farm large enough to ensure that its stores will never have to buy ...

User comments : 0

More news stories

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...