Creating energy from light and air

May 08, 2012
An artistic representation of submicron lipid vesicles filled with fluorescent molecules, reproduced by permission of Lars J C Jeuken and The Royal Society of Chemistry from Soft Matter, 2011, 7, 49-52, DOI: 10.1039/C0SM01016B

Researchers from the University are studying how to make electricity from electrodes coated in bacteria, and other living cells, using light or hydrogen as the fuel.

The aim of the research long-term is to develop more efficient , seen as the future of electronics.  Because biofuel cells are powered by readily available biological materials, they have the potential to be used indefinitely when electricity is required at places where is it not possible to replace a battery or recharge them.

Most biofuel cells create electricity using enzymes that process glucose, but the Leeds research will focus on bacterial enzymes that can harness light or hydrogen gas to create energy.  The work is funded by a £1.42m grant from the European Research Council.

Lead researcher, Dr Lars Jeuken, from the Faculty of Biological Sciences, says: "Technology that creates an electrical signal from a biochemical reaction is already in commercial use, for example in blood glucose biosensors.  However, developing an efficient biofuel cell that can create sufficient electricity for general use has proved much more difficult.  This is mainly because the systems developed to date have only limited control of how inorganic materials and biological molecules interact.

"Our research combines state of-the-art surface physics, colloid and organic chemistry, membrane biology and electrochemistry to develop with complete control of the biochemical interactions needed to create .  We now want to apply this to membrane proteins to generate energy from and ."

Dr Jeuken's research will also contribute to a new Interdisciplinary Centre for Microbial Fuel Cells (ICMFC), set up jointly between the Universities of Leeds, Sheffield and York.  The Centre will bring together chemists from York, biophysicists such as Dr Jeuken from Leeds and engineers from Sheffield, to work together on improving the performance of microbial fuel cells, using a combination of synthetic biology and nanoengineering.

Explore further: US urged to drop India WTO case on solar

add to favorites email to friend print save as pdf

Related Stories

Printable biofuel cell developed in Finland

Nov 08, 2006

An enzyme-based power source is a viable source of electricity for the rapidly proliferating RFID tags used in the medical sector and logistics. Applications include plasters containing a memory circuit and ...

Recommended for you

Switch on sunlight for a brighter future

2 hours ago

Imagine sitting in a windowless room yet having the feeling of the sun shining on your face. This unique experience is now possible thanks to the COELUX EU-funded project which recreates the physical and ...

US urged to drop India WTO case on solar

18 hours ago

Environmentalists Wednesday urged the United States to drop plans to haul India to the WTO to open its solar market, saying the action would hurt the fight against climate change.

Is nuclear power the only way to avoid geoengineering?

Apr 23, 2014

"I think one can argue that if we were to follow a strong nuclear energy pathway—as well as doing everything else that we can—then we can solve the climate problem without doing geoengineering." So says Tom Wigley, one ...

Finalists named in Bloomberg European city contest

Apr 23, 2014

Amsterdam wants to create an online game to get unemployed young people engaged in finding jobs across Europe. Schaerbeek, Belgium, envisions using geothermal mapping to give households personalized rundowns of steps to save ...

Bloomberg invests $5M in solar-powered lamp

Apr 22, 2014

Former New York Mayor Michael Bloomberg's foundation has announced a $5 million investment in an artsy-looking solar-powered lamp designed for use in off-grid populations in Africa.

User comments : 0

More news stories

New breast cancer imaging method promising

The new PAMmography method for imaging breast cancer developed by the University of Twente's MIRA research institute and the Medisch Spectrum Twente hospital appears to be a promising new method that could ...

Research proves nanobubbles are superstable

The intense research interest in surface nanobubbles arises from their potential applications in microfluidics and the scientific challenge for controlling their fundamental physical properties. One of the ...

Using antineutrinos to monitor nuclear reactors

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...