Efficient preparation of a set of potential glycosidase inhibitors

May 29, 2012

(Phys.org) -- In many biological and pathological processes, glycosidase enzymes attack glycosidic bonds in carbohydrates, glycoproteins, and glycolipids. The ability to modify or block these processes by specific glycosidase inhibitors forms the basis for their potential use in the treatment of viral infections, cancer, and genetic disorders.

A Dutch team led by Herman S. Overkleeft has now developed a method that allows the synthesis of 8 of the 16 possible configurational isomers of the inhibitor candidate deoxynojirimycin, which will allow comprehensive screening of this library. As the scientists report in the , their technique requires the use of a common precursor to prepare all eight compounds of biological interest.

Deoxynojirimycin and its derivatives have been long pursued by organic and medicinal chemists as a result of their potential as glycosidase inhibitors. Many groups now pursue these compounds for their application in the treatment of genetic disorders and . Consequently, many synthetic studies on deoxynojirimycins have appeared and continue to appear; however, synthetic strategies that allow different configurational isomers to be prepared in a concise fashion are scarce. This synthesis of such a library is important so that the compounds can be studied side by side. This technique can give chemists important insight into which structural features lead to higher levels of biological activity.

The scientists' procedure involves the use of a common cyanohydrin as the starting material, which is easily accessible in large quantities. The cyanohydrin is then transformed into cyclic building blocks from which the individual isomers can be assembled by using typical organic transformations. This work complements the large body of literature on the synthesis of 1-deoxynojirimycin derivatives with the distinguishing feature that eight of this important class of glycosidase inhibitors can be derived from a common precursor in an efficient manner. This team is therefore well on its way to helping scientists screen a diverse range of potential drugs that may lead to the treatment of important diseases.

Explore further: Pterostilbene, a molecule similar to resveratrol, as a potential treatment for obesity

More information: Herman S. Overkleeft, Synthesis of Eight 1-Deoxynojirimycin Isomers from a Single Chiral Cyanohydrin, European Journal of Organic Chemistry, dx.doi.org/10.1002/ejoc.201200377

Related Stories

New compounds for molecule interferometry experiments

Jul 20, 2011

When waves meet, a new single wave is created. This phenomenon is well understood for mechanical waves such as sound, and electro-magnetic waves such as light, and the "interference" of light waves is applied ...

Recommended for you

Why plants don't get sunburn

Oct 29, 2014

Plants rely on sunlight to make their food, but they also need protection from its harmful rays, just like humans do. Recently, scientists discovered a group of molecules in plants that shields them from ...

Viral switches share a shape

Oct 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

'Sticky' ends start synthetic collagen growth

Oct 27, 2014

Rice University researchers have delivered a scientific one-two punch with a pair of papers that detail how synthetic collagen fibers self-assemble via their sticky ends.

Cell membranes self-assemble

Oct 27, 2014

A self-driven reaction can assemble phospholipid membranes like those that enclose cells, a team of chemists at the University of California, San Diego, reports in Angewandte Chemie.

Emergent behavior lets bubbles 'sense' environment

Oct 27, 2014

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new work carried out in an international collaboration by biomedical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.