Plants could use light even more effectively for food production

May 24, 2012

(Phys.org) -- Scientists from Wageningen University have concluded that it is possible to develop plants that produce even more food by reducing the level of pigments which make no contribution to photosynthesis. The conclusion is based on research into the effectiveness of photosynthesis in various light conditions, which was carried out in cooperation with the VU University in Amsterdam. The scientists discovered that leaf pigments not directly involved in photosynthesis ‘dissipate’ light by absorption rather than using it effectively. Their findings were published in the scientific magazine Plant Cell.

Scientists around the world have been studying issues related to how use light colours for for over 70 years. Now research into the effectiveness of photosynthesis in various light conditions has answered some of the most important questions. It has shown that plants efficiently adapt their leaves to the light colours present where they grow. In this way they use the available light as effectively as possible. The research also demonstrated how specific combinations of various light colours result in more photosynthesis than the sum of the individual light colours. This insight is relevant, among other things, for minimising energy consumption in the lighting of horticultural greenhouses.

Moreover, the scientists discovered that leaf not directly involved in photosynthesis ‘dissipate’ light. While these non-photosynthetic pigments do absorb light, they do not use it for photosynthesis. This discovery could lead to the development of plants that produce more food by reducing the amount of these non-photosynthetic pigments. This mainly applies to ‘protected’ cultivation, such as in greenhouses, as at least some of the non-photosynthetic pigments have a protective function, for instance against too much UV or insect damage. These factors are less relevant in indoor cultivation than in open fields.

Scientists from Wageningen UR and research agency Plant Lighting of first author Sander Hogewoning are currently working on translating the new knowledge into applicable innovations.

The research was supported by STW, NWO, Philips, Plant Dynamics BV, VU University Amsterdam, the Product Board for Horticulture, and the Dutch Ministry of Economic Affairs, Agriculture and Innovation.

Explore further: Cell division speed influences gene architecture

add to favorites email to friend print save as pdf

Related Stories

Scientists uncover a photosynthetic puzzle

May 22, 2012

(Phys.org) -- Quantum physics and plant biology seem like two branches of science that could not be more different, but surprisingly they may in fact be intimately tied.

New research into plant colors sheds light on antioxidants

Oct 03, 2007

Scientists have made an important advance in understanding the genetic processes that give flowers, leaves and plants their bright colours. The knowledge could lead to a range of benefits, including better understanding of ...

Recommended for you

Cell division speed influences gene architecture

12 hours ago

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

Secret life of cells revealed with new technique

14 hours ago

(Phys.org) —A new technique that allows researchers to conduct experiments more rapidly and accurately is giving insights into the workings of proteins important in heart and muscle diseases.

In the 'slime jungle' height matters

14 hours ago

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

Queuing theory helps physicist understand protein recycling

Apr 22, 2014

We've all waited in line and most of us have gotten stuck in a check-out line longer than we would like. For Will Mather, assistant professor of physics and an instructor with the College of Science's Integrated Science Curriculum, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

askantik
5 / 5 (2) May 24, 2012
Reducing pigment levels would have an effect on nutrition, would it not? E.g., many pigments like beta-carotene or lutein aren't involved in photosynthesis but are highly important for nutritional purposes. This is all just my conjecture, of course, but I wouldn't want to produce more food if it was low quality.

More news stories