Research opens doors to UV disinfection using LED technology

May 14, 2012

Research from North Carolina State University will allow the development of energy-efficient LED devices that use ultraviolet (UV) light to kill pathogens such as bacteria and viruses. The technology has a wide array of applications ranging from drinking-water treatment to sterilizing surgical tools.

"UV treatment utilizing LEDs would be more cost-effective, energy efficient and longer lasting," says Dr. Ramón Collazo, an assistant professor of and engineering at NC State and lead author of a paper describing the research. "Our work would also allow for the development of robust and portable water-treatment technologies for use in developing countries."

LEDs utilize aluminum nitride (AlN) as a semiconductor, because the material can handle a lot of power and create in a wide spectrum of colors, particularly in the UV range. However, technologies that use AlN LEDs to create have been severely limited because the substrates that served as the foundation for these semiconductors absorbed wavelengths of UV light that are crucial to applications in sterilization and technologies.

A team of researchers from North Carolina and Japan has developed a solution to the problem. Using computer simulation, they determined that trace carbon atoms in the crystalline structure of the AlN substrate were responsible for absorbing most of the relevant UV light. By eliminating the carbon in the substrate, the team was able to significantly improve the amount of UV light that can pass through the substrate at the desired wavelengths.

"Once we identified the problem, it was relatively easy and inexpensive to address," says Dr. Zlatko Sitar, Kobe Steel Distinguished Professor of Materials Science and Engineering at NC State and co-author of the paper.

Commercial technologies incorporating this research are currently being developed by HexaTech Inc., a spin-off company from NC State.

"This is a problem that's been around for more than 30 years, and we were able to solve it by integrating advanced computation, materials synthesis and characterization," says Dr. Doug Irving, assistant professor of materials science and engineering at NC State and co-author of the paper. "I think we'll see more work in this vein as the Materials Genome Initiative moves forward, and that this approach will accelerate the development of new materials and related technologies."

The paper, "On the origin of the 265 nm absorption band in AlN bulk crystals," is published online in Applied Physics Letters. Co-authors include Benjamin Gaddy, Zachary Bryan, Ronny Kirste and Marc Hoffman from NC State, as well as researchers from HexaTech Inc., Tokyo University of Agriculture and Technology, and the Tokuyama Corporation. The research was supported with funding from the U.S. Department of Defense.

Explore further: Physicists advance understanding of transition metal oxides used in electronics

Related Stories

Duke develops new UV measurement tool

Nov 02, 2005

Researchers at Duke University's Pratt School of Engineering have developed a new way to measure microbes' exposure to ultraviolet light.

Solar power could get boost from new light absorption design

Nov 02, 2011

Solar power may be on the rise, but solar cells are only as efficient as the amount of sunlight they collect. Under the direction of a new professor at Northwestern University's McCormick School of Engineering and Applied ...

Recommended for you

Yellowstone's thermal springs—their colors unveiled

Dec 19, 2014

Researchers at Montana State University and Brandenburg University of Applied Sciences in Germany have created a simple mathematical model based on optical measurements that explains the stunning colors of ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Sanescience
1 / 5 (1) May 14, 2012
Next up, need UV lasers for player media for even higher than high def and 3D! Oh and neat-o futuristic black light laser weapons.

But seriously, having an efficient means to sterilize water can save a lot of lives and cut down on chemicals in the environment.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.