DoD basic research discovers new spectroscopic signatures from the 'Stuff of Life'

May 08, 2012 By Jim Hannah
Physics professor Elliott Brown and graduate student Anna Lukawska work in the lab on nanobiological characterizations.

There is hardly a greater discovery during the past century than DNA–deoxyribonucleic acid–the biomolecular material in every cell of the human body. DNA contains the genetic information necessary for cell replication, protein synthesis and reproduction.

Naturally, sensing and identification has become a very important technology in such areas as biology, medicine and law enforcement. But positive identification without ambiguity is difficult because DNA is so sparse in the human organism and because it shares many of the same chemical bonds as other more common biomolecules–proteins and polysaccharides.

So traditional spectroscopic methods, such as infrared transmission, cannot distinguish DNA from these other molecules. More elaborate techniques are necessary, such as polymerase chain reaction (PCR) followed by gel electrophoresis, which are expensive and time-consuming.

Fortunately, the large size of DNA molecules makes them amenable to other spectroscopic methods in the THz region of the electromagnetic spectrum–a region well below the infrared in frequency but well above common radio and radar frequencies.

Wright State University researchers led by physics professor Elliott Brown have been investigating these unique THz DNA signatures through a Multidisciplinary University Research Initiative (MURI) funded by the U.S. Army Research Office. Their multi-year $600,000 grant has recently identified several unique and surprisingly strong signatures from DNA molecules between 0.7 and 1.0 THz.

“The surprise is that we have recently measured these DNA signatures under physiological conditions in which the DNA was suspended in an aqueous buffer solution very similar to that in living cells,” Brown said. “Previously, the strong THz absorption by liquid water was thought to be too strong to observe signatures from any suspended molecular species.”

So far, Brown said, the signatures appear unique to the DNA molecule at hand, be it single-stranded or double-stranded DNA.

“The caveat is that so far we have only observed relatively short DNA strands well under the length of the human genome,” he said. “But we are moving in that direction.”

The research project is headed by the University of California-Irvine, and along with Wright State University has collaborators at Marshall University, Yale University and the University of Chicago. The MURI Grant funds the research for up to five years.

Explore further: Following a protein's travel inside cells is key to improving patient monitoring, drug development

add to favorites email to friend print save as pdf

Related Stories

DNA falls apart when you pull it

May 20, 2011

DNA falls apart when you pull it with a tiny force: the two strands that constitute a DNA molecule disconnect. Peter Gross of VU University Amsterdam has shown this in his PhD research project. With this research, ...

DNA 'off switch' may reverse premature aging

Jun 15, 2011

The secret to preventing or reversing premature aging may be found in a DNA “off switch” that humans share with common yeast, according to new research from the University of Toronto.

The next computer: your genes

May 16, 2011

(PhysOrg.com) -- "Human beings are more or less like a computer," Jian-Jun Shu tells PhysOrg.com. "We do computing work, and our DNA can be used in computing operations." Shu is a professor at the School of Mec ...

Recommended for you

New method to analyse how cancer cells die

17 hours ago

(Phys.org) —A team from The University of Manchester – part of the Manchester Cancer Research Centre - have found a new method to more efficiently manufacture a chemical used to monitor cancer cells.

The anti-inflammatory factory

Apr 22, 2014

Russian scientists, in collaboration with their colleagues from Pittsburgh University, have discovered how lipid mediators are produced. The relevant paper was published in Nature Chemistry. Lipid mediators are molecules that p ...

User comments : 0

More news stories

Computer program could help solve arson cases

Sifting through the chemical clues left behind by arson is delicate, time-consuming work, but University of Alberta researchers teaming with RCMP scientists in Canada, have found a way to speed the process.

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.