DNA tug of war

May 11, 2012

A mathematical model created by Aalto University (Finland) researcher Timo Ikonen explains for the first time how the DNA chains in our genome are translocated through nanopores that are only a couple of nanometres thick.

A research paper soon to be published in Physical Review E explains the basic physics related to the phenomenon referred to as polymer translocation. Exploring this phenomenon could help to create third generation .

With the help of these technologies, sequencing a patient's genome could become a routine health care procedure.

Full genome sequencing is one of the major accomplishments of humankind. The method for sequencing the millions of base pairs that make up the human chain was revealed in the 1970s, but the entire was not sequenced until 2001.

Sequencing the first human genome cost almost 3 billion dollars. The analysis is still extremely laborious: sequencing the genome of one person costs over 10,000 dollars.

The translocation phenomenon examined by Ikonen enables researchers to use a much simpler method for determining the base sequence of genes. As early as in the 1990s, researchers discovered that when a DNA chain is forced through a small nanopore with the help of an electric current, different types of bases can be identified by monitoring the changes occurring in the current.

hurried to find out whether the phenomenon could be applied to determining the base sequence of a genome. A small number of theorists began exploring what happened during the actual translocation process. The first translocation theory was presented by Professor Sung's group in 1996. Sung is now Ikonen's research partner.

The first DNA sequencer based on translocation will soon be on the market, but the theory itself has been controversial. Tests have revealed that when an electric current is used to drive a DNA chain through a pore that is only a couple of nanometres thick, the first monomers of the chain go through the pore very rapidly. Then the process slows down, but later on it speeds up again.

"The million dollar question has been why this happens," researcher Timo Ikonen says.

In his article, Ikonen presents a that explains the events of the translocation process. The researcher compares the DNA chain to a garden hose curled up on the ground.

"As the curled up hose gradually straightens and the length of the part being pulled grows, pulling the hose becomes harder," Ikonen explains.

Finally the entire hose will be moving and this is when pulling it along will require the most effort. When more than half of the DNA strand has gone through the , the tail end of the base chain begins to shorten and the speed of the translocation process increases.

Ikonen realised how the translocation friction of a DNA strand was dependent of time during a research visit to South Korea in January 2011. Professor Sung's doctoral candidate presented a research paper by Japanese professor Takahiro Sakaue in which the progression of translocation had been described in a similar manner.

Ikonen corrected some of Sakaue's hypotheses and soon the new model was producing results that were in almost perfect accordance with the molecular-level simulations. "It was unbelievable," Ikonen describes his feelings after receiving the first results.

His first presentation on the subject attracted the deserved attention at a conference held by the American Physical Society (APS).

In the article to be published, titled "Unifying model of driven polymer translocation", Ikonen also explains how the length of the molecule chain affects the translocation time. His model reveals why computer simulations and previous mathematical models have produced conflicting results.

- Previously, researchers have been comparing apples and oranges. The simulations have been performed using chains of no more than a thousand monomers, whereas the mathematical models have been designed for chains of infinite length.

Ikonen noticed that the total length of a DNA chain does not cease to affect the progress of the translocation process until it is approximately 100,000 bases long. The new theory and simulations produce similar results for chains of all lengths.

- This proves that our idea about the force progressing through the chain is in line with what actually takes place during translocation.

Ikonen's model represents basic research and it can be applied in various fields. Understanding the basic physics of translocation is valuable to the developers of new gene sequencers. With third generation equipment, the price of full genome sequencing may drop to less than 100 dollars.

Translocation also occurs in many other biological processes, such as when viruses inject their genome through cell walls. The new model provides researchers with the information needed to understand how long polymer chains travel through nanometre-scale holes. Observing these nanoscale phenomena in nature is extremely difficult. Now researchers will be able to use regular desktop computers instead of the supercomputers normally used for simulations.

The "Unifying model of driven polymer translocation" research paper has been pre-published in the arXiv service.

Explore further: Famous Feynman lectures put online with free access

add to favorites email to friend print save as pdf

Related Stories

Moving polymers through pores

Jul 14, 2010

The movement of long chain polymers through nanopores is a key part of many biological processes, including the transport of RNA, DNA, and proteins. New research reported in The Journal of Chemical Physics, which ...

Recommended for you

New method for non-invasive prostate cancer screening

11 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

12 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

13 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

17 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) May 11, 2012
this phenomenon could help to create third generation genome sequencing technologies.
These technologies were already developed without it. http://www.wired....sb-stick