Order from disorder

May 02, 2012
Electron microscopy image of contiguous and intermittent alpha-synuclein fibrils. The blue arrow indicates a contiguous fibre and the red arrow indicates an intermittent fibre.

NPL and University of Leicester scientists have explored a new way of ordering proteins for materials engineering at the nanoscale, using natural biological phenomena as a guide.

The researchers looked at alpha-synuclein, a protein associated with neurological diseases such as Parkinson's, Alzheimer's and some dementias, and found that it can form chain-like fibrillar structures with nanoscale regularity and precision (see image). The protein is intrinsically disordered in vitro, when isolated from the body, and clumps together to form insoluble aggregates which then arrange themselves into long, thin fibres. Interestingly, these fibres can either be contiguous (blue arrow) or intermittent (red arrow).

In this study the researchers were able to demonstrate that this phenomenon can be emulated by artificially introducing regions of structural disorder into an unrelated, so-called 'designer' fibre. The gaps between the different segments and within the arrays themselves could be controlled and used as templates to synthesis further arrays of or .

This concept could be used to engineer novel nanoscale materials and devices such as integrated biosensors and nanoarrays, for diagnosing disease or studying proteins. Using protein self-assembly in this way would prove more efficient and cost effective than traditional techniques, which require complicated instruments and tightly controlled environmental conditions.

The results are also important as they indicate a possible mechanism to detect and target the alpha-synuclein protein in the treatment of .

Explore further: Adventurous bacteria

More information: DOI: 10.1002/mabi.201100295

Related Stories

How Parkinson's disease starts and spreads

Apr 16, 2012

Injection of a small amount of clumped protein triggers a cascade of events leading to a Parkinson's-like disease in mice, according to an article published online this week in the Journal of Experimental Medicine.

Structure of Parkinson's disease protein identified

Oct 24, 2011

A team of researchers from the Petsko-Ringe and Pochapsky laboratories at Brandeis have produced and determined the structure of alpha-synuclein, a key protein associated with Parkinson’s disease.

Recommended for you

For cells, internal stress leads to unique shapes

17 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

18 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

20 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Net neutrality balancing act

Researchers in Italy, writing in the International Journal of Technology, Policy and Management have demonstrated that net neutrality benefits content creator and consumers without compromising provider innovation nor pr ...