Order from disorder

May 02, 2012
Electron microscopy image of contiguous and intermittent alpha-synuclein fibrils. The blue arrow indicates a contiguous fibre and the red arrow indicates an intermittent fibre.

NPL and University of Leicester scientists have explored a new way of ordering proteins for materials engineering at the nanoscale, using natural biological phenomena as a guide.

The researchers looked at alpha-synuclein, a protein associated with neurological diseases such as Parkinson's, Alzheimer's and some dementias, and found that it can form chain-like fibrillar structures with nanoscale regularity and precision (see image). The protein is intrinsically disordered in vitro, when isolated from the body, and clumps together to form insoluble aggregates which then arrange themselves into long, thin fibres. Interestingly, these fibres can either be contiguous (blue arrow) or intermittent (red arrow).

In this study the researchers were able to demonstrate that this phenomenon can be emulated by artificially introducing regions of structural disorder into an unrelated, so-called 'designer' fibre. The gaps between the different segments and within the arrays themselves could be controlled and used as templates to synthesis further arrays of or .

This concept could be used to engineer novel nanoscale materials and devices such as integrated biosensors and nanoarrays, for diagnosing disease or studying proteins. Using protein self-assembly in this way would prove more efficient and cost effective than traditional techniques, which require complicated instruments and tightly controlled environmental conditions.

The results are also important as they indicate a possible mechanism to detect and target the alpha-synuclein protein in the treatment of .

Explore further: Research sheds light on what causes cells to divide

More information: DOI: 10.1002/mabi.201100295

Related Stories

How Parkinson's disease starts and spreads

Apr 16, 2012

Injection of a small amount of clumped protein triggers a cascade of events leading to a Parkinson's-like disease in mice, according to an article published online this week in the Journal of Experimental Medicine.

Structure of Parkinson's disease protein identified

Oct 24, 2011

A team of researchers from the Petsko-Ringe and Pochapsky laboratories at Brandeis have produced and determined the structure of alpha-synuclein, a key protein associated with Parkinson’s disease.

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

5 hours ago

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.