Planned coincidence: Antibody-based search for new chemical reactions

May 22, 2012

(Phys.org) -- Many discoveries are made by chance, but it is also possible to help it along: The chance of finding something interesting increases when the number of experiments rises. French researchers have now applied this principle to the search for new chemical reactions. In the journal Angewandte Chemie, they have introduced a new concept based on antibodies and a "sandwich" immunoassay.

Is there any value in randomly mixing substances together like an alchemist to see what happens? When it is carried out systematically and on a large scale, this promising approach, known as high-throughput screening, has become an established technique used in the search for pharmaceutical agents and catalysts. This concept is now being applied more broadly to the search for novel types of , particularly in the search for new, easier, faster, or more elegant for natural products, specialty chemicals, and drugs.

French scientists led by Frédéric Taran (Institute of Biology and Technology, Saclay, iBiTec-S, Gif-sur-Yvette) have now developed a new immunoassay-based approach to searching for new coupling reactions that link two organic molecules together.

Reactants A and B are added to the wells of a microtiter plate. In some wells, various transition metals are added as possible reaction promotors. Reactant A carries a marker that is recognized and bound by antibody AK1; reactant B carries a marker for antibody AK2. If a coupling occurs, the product has both markers. After the reaction, the solutions are transferred to new plates that are coated with AK1. After a washing step, only molecules with a binding site for AK1 remain on the plate. A solution of AK2 is next applied, followed by another washing step. Wherever AK2 binds, a product must be present that carries both markers – the result is a “sandwich” in which the product is the filling between two antibody “slices” of bread. Successful reactions are made visible by an enzyme that is bound to AK2 and causes the color to change to yellow. Wherever the color is clearly yellow, the reaction product is analyzed to determine if the reaction that formed it is of a known type or is previously unknown.

In order to prove that this concept works, the researchers examined 2260 reactions in parallel. The reactants they selected have both conventional and unconventional reactive groups. They were thus able to identify two new types of reaction promoted by copper: the reaction of thioureas to form isoureas and a cyclization reaction to form thiazole derivatives from alkynes and N-hydroxy thioureas.

Explore further: Building the ideal rest stop for protons

More information: Frédéric Taran, Reaction Discovery by Using a Sandwich Immunoassay, Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201201451

Related Stories

Microscale Chemical Factory

Jul 04, 2007

Miniaturization is invading the world of chemical syntheses. Since typical chemical syntheses take place in several reaction steps with various separation or purification steps in between, microchemistry has almost always ...

Accounting for scale in catalysis

Mar 14, 2011

(PhysOrg.com) -- Depicting a catalyst's behavior in the real world just got a lot easier, thanks to scientists in the Institute for Interfacial Catalysis (IIC) at Pacific Northwest National Laboratory. They ...

Water: the Solvent of Choice

May 16, 2005

Miscibility not required: chemical reactions "on water" faster than in organic solvents We all know what it means to put something "on ice", but what is a chemical reaction "on water"? This new expression has been coined by a ...

Recommended for you

Building the ideal rest stop for protons

12 hours ago

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

14 hours ago

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 0