Make or break for cellular tissues

May 16, 2012

In a study about to be published in the European Physical Journal E, French physicists from the Curie Institute in Paris have demonstrated that the behaviour of a thin layer of cells in contact with an unfavourable substrate is akin to that of thin fluid or elastic films. Understanding the mechanism by which a thin layer of cells splits into disjointed patches, thus breaking the layer's structural integrity, bears great significance because the human tissue, or epithelium, covering organs can only fulfil its role if there are no holes or gaps between the cells.

Thanks to the between the cellular layer examined and the well-understood behaviour of thin liquid films, the scientists Stéphane Douezan and Françoise Brochard-Nyart devised a model of the layer's evolution. They considered it as an active, amorphous material made of a continuum of . Because it is subject to a constant competition between neighbouring cell-cell and cell-substrate adhesion, it can either maintain its contiguous structure or break.

The authors investigated the layer's stability when subjected to chemical and physical disturbances. In particular, they scrutinised how the cellular layer reacted to a non-adhesive substrate with little chemical affinity with the cells. They also subjected the cells to a physical disturbance by laying them in substrates with low stiffness, such as soft gels.

The researchers observed what is known as the dewetting phenomenon, whereby the cellular layer is ruptured leading to islands of cells interspersed with dry patches. Dewetting is normally observed in viscous polymer films on slippery surfaces. They concluded that the dewetting phenomenon is due to the cells' distinctive sensitivity to the nature of its substrate, particularly to its decreased stiffness. This means that active, living cells remain governed by the law of physics.

Explore further: Work on pioneering pan-European neutron facility underway

More information: Douezan S., Brochard-Wyart F. (2012), Dewetting of cellular monolayers, European Physical Journal E, DOI 10.1140/epje/i2012-12034-9

add to favorites email to friend print save as pdf

Related Stories

Coming Soon: Blood Vessels from a Test Tube?

Jun 04, 2007

Our tissues and organs consist of a complex, closely balanced assembly of different types of cells, extracellular matrix, and special signal-carrying molecules. The growth of such structures in the laboratory, perhaps for ...

Researchers fabricate more efficient polymer solar cells

Dec 02, 2010

(PhysOrg.com) -- Researchers from Iowa State University and the Ames Laboratory have developed a process capable of producing a thin and uniform light-absorbing layer on textured substrates that improves the ...

Recommended for you

Work on pioneering pan-European neutron facility underway

9 minutes ago

A state-of-the-art facility capable of generating neutron beams 30 times brighter than current facilities is about to be constructed in the Swedish town of Lund. The EUR 1.8 billion will help scientists examine ...

Synchrotron upgrade to make X-rays even brighter

1 hour ago

(Phys.org) —The X-rays produced by the Cornell High Energy Synchrotron Source (CHESS) are bright, but they will soon be even brighter, thanks to a major upgrade that will make the quality of CHESS' X-rays ...

Cold Atom Laboratory creates atomic dance

17 hours ago

Like dancers in a chorus line, atoms' movements become synchronized when lowered to extremely cold temperatures. To study this bizarre phenomenon, called a Bose-Einstein condensate, researchers need to cool ...

Scientists create possible precursor to life

Oct 20, 2014

How did life originate? And can scientists create life? These questions not only occupy the minds of scientists interested in the origin of life, but also researchers working with technology of the future. ...

User comments : 0