New type of biosensor is fast, super-sensitive

May 29, 2012 By Bob Beale
Schematic: Magnets are used to assemble nanoparticles, coated with antibodies to enrofloxacin, between two electrodes: when antibodies leave the nanoparticles the electrical resistance falls.

(Phys.org) -- A whole new class of biosensor that can detect exceptionally small traces of contaminants in liquids in just 40 minutes has been developed by a UNSW-led team of researchers.

Known as a biochemiresistor, it meets a long-standing challenge to create a sensor that is not only super-sensitive to the presence of but responds quickly. It has countless potential uses for detecting drugs, toxins and for biomedical or environmental analysis.

In a paper published in the prestigious chemistry journal Angewandte Chemie the researchers describe how they successfully tested the new sensor by detecting tiny traces in milk of the veterinary antibiotic enrofloxacin. The journal has singled out the study for attention as a “Very Important Paper”. Only 5% of papers published by the journal are so designated.

“Enrofloxacin is an antibiotic used in the agricultural industry that can be transferred to the food chain,” notes co-author Scientia Professor Justin Gooding, of the UNSW School of Chemistry and the Australian Centre for Nanomedicine.

“Our biochemiresistor was able to detect enrofloxacin in neat milk in 40 minutes, at level as low as one nanogram in a litre of milk. To put that number in perspective, a nanogram is a billionth of a gram and is the mass of a single cell.

“While that is impressive enough, the sensor is a general concept that can be widely applied across many different fields.” 

A biosensor is a portable analytical device that uses biological molecules to detect selectively just one compound within a mix of many others. Small biosensors are already in daily use testing the safety of drinking water, for checking diabetic blood-sugar levels and for pregnancy tests

The biochemiresistor uses gold-coated magnetic nanoparticles modified with antibodies that are selective for the chemical constituent – or analyte - of interest. The nanoparticles are dispersed into the sample for analysis and if the analyte is present some of the antibodies detach from the nanoparticles.

Using a magnet, the nanoparticles are then assembled into a film between two electrodes and the electrical resistance is measured. The more analyte is present, the more antibodies leave the nanoparticles and the lower the resistance in the nanoparticle film.

“This new type of biosensor is rapid in response because the magnetic nanoparticle biosensors go and get the analyte rather than the usual approach of waiting for the analyte to find the sensing surface,” says Gooding.

“The biochemiresistor is also more sensitive than the usual because, as the nanoparticles are dispersed throughout the sample, the entire sample is analysed, not just a small portion of the solution.”

The study’s lead author is Leo M.H. Lai.

Explore further: Bubble wrap serves as sheet of tiny test tubes in resource-limited regions

More information: onlinelibrary.wiley.com/doi/10… e.201202350/abstract

Related Stories

An innovative method for measuring nanoparticles

Aug 31, 2011

Precise measurement of the molecular weight, size and density of a nanoparticle in a single procedure is now possible, thanks to an ultracentrifugation method, dusted off by Swiss scientists at EPFL.

Hot off the press: Nanoscale Gutenberg-style printing

Apr 15, 2011

(PhysOrg.com) -- When Gutenberg developed the principles of modern book printing, books became available to the masses. Hoping to bring technology capable of mass production to the nanometer scale, Udo Bach ...

Recommended for you

Chemists eye improved thin films with metal substitution

14 hours ago

The yield so far is small, but chemists at the University of Oregon have developed a low-energy, solution-based mineral substitution process to make a precursor to transparent thin films that could find use ...

Essential oils may provide good source of food preservation

18 hours ago

A new study in the Journal of Food Science, published by the Institute of Food Technologists (IFT), found that essential oils may be able to be used as food preservatives in packaging to help extend the shelf-life of foo ...

Researchers create safe, resistant material to store waste

21 hours ago

(Phys.org) —Storing industrial waste has never been a pretty job, and it's getting harder. New techniques for refining such metals as aluminum and vanadium, for example, also yield new byproducts that have ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

speakermagnet
not rated yet May 29, 2012
I'm not sure why this is considered a rapid test since 40 minutes of incubation appears to be a considerable amount of time. From my limited understanding I believe standard ELISA testing takes approximately 30 minutes. Maybe it is considered rapid for this level of sensitivity.