New type of biosensor is fast, super-sensitive

May 29, 2012 By Bob Beale
Schematic: Magnets are used to assemble nanoparticles, coated with antibodies to enrofloxacin, between two electrodes: when antibodies leave the nanoparticles the electrical resistance falls.

(Phys.org) -- A whole new class of biosensor that can detect exceptionally small traces of contaminants in liquids in just 40 minutes has been developed by a UNSW-led team of researchers.

Known as a biochemiresistor, it meets a long-standing challenge to create a sensor that is not only super-sensitive to the presence of but responds quickly. It has countless potential uses for detecting drugs, toxins and for biomedical or environmental analysis.

In a paper published in the prestigious chemistry journal Angewandte Chemie the researchers describe how they successfully tested the new sensor by detecting tiny traces in milk of the veterinary antibiotic enrofloxacin. The journal has singled out the study for attention as a “Very Important Paper”. Only 5% of papers published by the journal are so designated.

“Enrofloxacin is an antibiotic used in the agricultural industry that can be transferred to the food chain,” notes co-author Scientia Professor Justin Gooding, of the UNSW School of Chemistry and the Australian Centre for Nanomedicine.

“Our biochemiresistor was able to detect enrofloxacin in neat milk in 40 minutes, at level as low as one nanogram in a litre of milk. To put that number in perspective, a nanogram is a billionth of a gram and is the mass of a single cell.

“While that is impressive enough, the sensor is a general concept that can be widely applied across many different fields.” 

A biosensor is a portable analytical device that uses biological molecules to detect selectively just one compound within a mix of many others. Small biosensors are already in daily use testing the safety of drinking water, for checking diabetic blood-sugar levels and for pregnancy tests

The biochemiresistor uses gold-coated magnetic nanoparticles modified with antibodies that are selective for the chemical constituent – or analyte - of interest. The nanoparticles are dispersed into the sample for analysis and if the analyte is present some of the antibodies detach from the nanoparticles.

Using a magnet, the nanoparticles are then assembled into a film between two electrodes and the electrical resistance is measured. The more analyte is present, the more antibodies leave the nanoparticles and the lower the resistance in the nanoparticle film.

“This new type of biosensor is rapid in response because the magnetic nanoparticle biosensors go and get the analyte rather than the usual approach of waiting for the analyte to find the sensing surface,” says Gooding.

“The biochemiresistor is also more sensitive than the usual because, as the nanoparticles are dispersed throughout the sample, the entire sample is analysed, not just a small portion of the solution.”

The study’s lead author is Leo M.H. Lai.

Explore further: Rapid, one-step, ultra-sensitive detection of food poisoning bacteria and biothreats

More information: onlinelibrary.wiley.com/doi/10.1002/anie.201202350/abstract

Related Stories

Hot off the press: Nanoscale Gutenberg-style printing

April 15, 2011

(PhysOrg.com) -- When Gutenberg developed the principles of modern book printing, books became available to the masses. Hoping to bring technology capable of mass production to the nanometer scale, Udo Bach and this team ...

An innovative method for measuring nanoparticles

August 31, 2011

Precise measurement of the molecular weight, size and density of a nanoparticle in a single procedure is now possible, thanks to an ultracentrifugation method, dusted off by Swiss scientists at EPFL.

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

speakermagnet
not rated yet May 29, 2012
I'm not sure why this is considered a rapid test since 40 minutes of incubation appears to be a considerable amount of time. From my limited understanding I believe standard ELISA testing takes approximately 30 minutes. Maybe it is considered rapid for this level of sensitivity.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.