Beetle-infested pine trees contribute more to air pollution and haze in forests

May 23, 2012

The hordes of bark beetles that have bored their way through more than 6 billion trees in the western U.S. and British Columbia since the 1990s do more than damage and kill stately pine, spruce and other trees. A new study finds that these pests can make trees release up to 20 times more of the organic substances that foster haze and air pollution in forested areas. It appears in ACS' journal Environmental Science & Technology.

Kara Huff Hartz, Gannet Hallar and colleagues explain that western North America is experiencing a population explosion of mountain pine beetles, a type of bark beetle that damages and kills pines and other trees. The beetles bore into the bark of pine trees to lay eggs. Gases, called volatile organic compounds (VOCs), which act as defense mechanisms against the beetles, are released from the bore holes. VOCs, however, also contribute to the smog and haze that obscures views of natural landscapes in U.S. National Parks and other nature areas where tourists gather in the summertime. To determine exactly how beetle attacks affect the atmosphere, the researchers measured VOC levels in the air near healthy and infected pine trees.

They found that beetle-infested trees release up to 20 times more VOCs than healthy trees near the ground surface. The predominant type of VOC was a monoterpene called ß-phellandrene. The data suggest that the bark beetle epidemic in the western U.S. could have led to higher monoterpene concentrations in the air that can contribute to haze, which can harm human health, reduce visibility and impact climate, say the researchers.

Explore further: Dead floppy drive: Kenya recycles global e-waste

More information: Effect of Bark Beetle Infestation on Secondary Organic Aerosol Precursor Emissions, Environ. Sci. Technol., Article ASAP. DOI: 10.1021/es204205m

Abstract
Bark beetles are a potentially destructive force in forest ecosystems; however, it is not known how insect attacks affect the atmosphere. The emissions of volatile organic compounds (VOCs) were sampled i.) from bark beetle infested and healthy lodgepole pine (Pinus contorta var. latifolia) trees and ii.) from sites with and without active mountain pine beetle infestation. The emissions from the trunk and the canopy were collected via sorbent traps. After collection, the sorbent traps were extracted with hexane, and the extracts were separated and detected using gas chromatography/mass spectroscopy. Canister samples were also collected and analyzed by a multicolumn gas chromatographic system. The samples from bark beetle infested lodgepole pine trees suggest a 5- to 20-fold enhancement in total VOCs emissions. Furthermore, increases in the β-phellandrene emissions correlated with bark beetle infestation. A shift in the type and the quantity of VOC emissions can be used to identify bark beetle infestation but, more importantly, can lead to increases in secondary organic aerosol from these forests as potent SOA precursors are produced.

add to favorites email to friend print save as pdf

Related Stories

Complex dynamics underlie bark beetle eruptions

Jun 02, 2008

Forest management that favors single tree species and climate change are just two of the critical factors making forests throughout western North America more susceptible to infestation by bark beetles, according to an article ...

Mountain pine beetle marching east from Alberta

Apr 04, 2011

A University of Alberta-led research team has determined that the mountain pine beetle has invaded jack pine forests in Alberta, opening up the possibility for an infestation that could stretch across the Prairies and keep ...

Recommended for you

Dead floppy drive: Kenya recycles global e-waste

14 hours ago

In an industrial area outside Kenya's capital city, workers in hard hats and white masks take shiny new power drills to computer parts. This assembly line is not assembling, though. It is dismantling some ...

New paper calls for more carbon capture and storage research

19 hours ago

Federal efforts to reduce greenhouse gas emissions must involve increased investment in research and development of carbon capture and storage technologies, according to a new paper published by the University of Wyoming's ...

Coal gas boom in China holds climate change risks

Aug 22, 2014

Deep in the hilly grasslands of remote Inner Mongolia, twin smoke stacks rise more than 200 feet into the sky, their steam and sulfur billowing over herds of sheep and cattle. Both day and night, the rumble ...

User comments : 0