Beetle-infested pine trees contribute more to air pollution and haze in forests

May 23, 2012

The hordes of bark beetles that have bored their way through more than 6 billion trees in the western U.S. and British Columbia since the 1990s do more than damage and kill stately pine, spruce and other trees. A new study finds that these pests can make trees release up to 20 times more of the organic substances that foster haze and air pollution in forested areas. It appears in ACS' journal Environmental Science & Technology.

Kara Huff Hartz, Gannet Hallar and colleagues explain that western North America is experiencing a population explosion of mountain pine beetles, a type of bark beetle that damages and kills pines and other trees. The beetles bore into the bark of pine trees to lay eggs. Gases, called volatile organic compounds (VOCs), which act as defense mechanisms against the beetles, are released from the bore holes. VOCs, however, also contribute to the smog and haze that obscures views of natural landscapes in U.S. National Parks and other nature areas where tourists gather in the summertime. To determine exactly how beetle attacks affect the atmosphere, the researchers measured VOC levels in the air near healthy and infected pine trees.

They found that beetle-infested trees release up to 20 times more VOCs than healthy trees near the ground surface. The predominant type of VOC was a monoterpene called ß-phellandrene. The data suggest that the bark beetle epidemic in the western U.S. could have led to higher monoterpene concentrations in the air that can contribute to haze, which can harm human health, reduce visibility and impact climate, say the researchers.

Explore further: Wet, wild monsoon season ends in Southwest

More information: Effect of Bark Beetle Infestation on Secondary Organic Aerosol Precursor Emissions, Environ. Sci. Technol., Article ASAP. DOI: 10.1021/es204205m

Abstract
Bark beetles are a potentially destructive force in forest ecosystems; however, it is not known how insect attacks affect the atmosphere. The emissions of volatile organic compounds (VOCs) were sampled i.) from bark beetle infested and healthy lodgepole pine (Pinus contorta var. latifolia) trees and ii.) from sites with and without active mountain pine beetle infestation. The emissions from the trunk and the canopy were collected via sorbent traps. After collection, the sorbent traps were extracted with hexane, and the extracts were separated and detected using gas chromatography/mass spectroscopy. Canister samples were also collected and analyzed by a multicolumn gas chromatographic system. The samples from bark beetle infested lodgepole pine trees suggest a 5- to 20-fold enhancement in total VOCs emissions. Furthermore, increases in the β-phellandrene emissions correlated with bark beetle infestation. A shift in the type and the quantity of VOC emissions can be used to identify bark beetle infestation but, more importantly, can lead to increases in secondary organic aerosol from these forests as potent SOA precursors are produced.

add to favorites email to friend print save as pdf

Related Stories

Complex dynamics underlie bark beetle eruptions

Jun 02, 2008

Forest management that favors single tree species and climate change are just two of the critical factors making forests throughout western North America more susceptible to infestation by bark beetles, according to an article ...

Mountain pine beetle marching east from Alberta

Apr 04, 2011

A University of Alberta-led research team has determined that the mountain pine beetle has invaded jack pine forests in Alberta, opening up the possibility for an infestation that could stretch across the Prairies and keep ...

Recommended for you

Measuring the height of the world's forests

1 hour ago

If we know the height of the world's forests, then we can estimate how much carbon they store. That will improve our understanding of how forests interact with the atmosphere and their role in mitigating ...

Scientists probe leak risk from seabed CO2 stores

2 hours ago

A UK-led international research team has carried out the first experiment to recreate what would happen if CO2 started leaking after being stored deep under the sea floor. Their findings add weight to the ide ...

User comments : 0