New bacterium forms intracellular minerals

May 11, 2012
Image of Candidatus Gloeomargarita lithophora. Inclusions of calcium, magnesium, barium and strontium carbonates can be seen Inside the cyanobacterium. © Karim Benzerara & Stefan Borensztajn

A new species of photosynthetic bacterium has come to light: it is able to control the formation of minerals (calcium, magnesium, barium and strontium carbonates) within its own organism. Published in Science on April 27, 2012, a study by French researchers reveals the existence of this new type of biomineralization, whose mechanism is still unknown. This finding has important implications for the interpretation of the ancient fossil record.

Cyanobacteria have long attracted scientists' attention. Capable of photosynthesis, these microorganisms have played a major role in Earth's history, in particular by contributing to the oxygenation of the atmosphere. Some are able to form calcium carbonate outside their cell, especially those associated with stromatolites, that date back some 3.5 billion years and are among the earliest traces of . Fossil cyanobacteria should therefore be present within this type of formation. However, the first fossil cyanobacteria go back a mere 700 million years, well after in the Earth's atmosphere started to rise some 2.3 billion years ago.

A French team may have found the reason for this long time lapse. In stromatolites collected in a crater lake in Mexico and cultured in the laboratory, the scientists discovered a new species of cyanobacterium, called Candidatus Gloeomargarita lithophora. This microorganism descends from a lineage that diverged early on in cyanobacteria. Thanks to an as yet unknown mechanism, this cyanobacterium forms intracellular calcium carbonate nanoparticles of around 270 nanometers (270 billionths of a meter). While some cyanobacteria were known to form extracellular calcium carbonate within stromatolites, their formation within the cell had never been observed. Another distinctive feature of the new species is that it accumulates strontium and barium and incorporates them into the carbonate.

This finding is significant for the interpretation of the ancient fossil record. If the cyanobacteria associated with stromatolites formed carbonates inside their cells rather than outside, they would not have been preserved in the fossil record. This would explain the time lapse between their earliest appearance (at least 2.3 billion years ago) and the oldest fossils discovered (700 million years ago). The next step is to find out why and how this cyanobacterium produces the .

Explore further: Neutron diffraction sheds light on photosynthesis

More information: An Early-Branching Microbialite Cyanobacterium Forms Intracellular Carbonates, Estelle Couradeau, Karim Benzerara, Emmanuelle Gérard, David Moreira, Sylvain Bernard, Gordon E. Brown Jr., Purificación López-García – Science, 27 April 2012

Related Stories

Mystery dissolves with calcium pump discovery

Nov 30, 2010

Geo-microbiologists from Arizona State University have solved a long-standing conundrum about how some photosynthetic microorganisms, endolithic cyanobacteria, bore their way into limestone, sand grains, mussel ...

Stepping stones through time

Oct 05, 2010

Stromatolites are the most ancient fossils on Earth, and these structures built by microbes can still be found forming today in various places around the globe. Although they provide a straight line of life’s ...

First Fossil-Makers in Hot Water

Mar 02, 2010

Microbe mats in Yellowstone's hot springs may be living analogs of the primordial microbe communities that constructed the oldest rock fossils on Earth.

Carbonate veins reveal chemistry of ancient seawater

Feb 05, 2010

The chemical composition of our oceans is not constant but has varied significantly over geological time. In a study published this week in Science, researchers describe a novel method for reconstructing past o ...

Recommended for you

Research helps identify memory molecules

4 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

5 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

5 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0