New bacterium forms intracellular minerals

May 11, 2012
Image of Candidatus Gloeomargarita lithophora. Inclusions of calcium, magnesium, barium and strontium carbonates can be seen Inside the cyanobacterium. © Karim Benzerara & Stefan Borensztajn

A new species of photosynthetic bacterium has come to light: it is able to control the formation of minerals (calcium, magnesium, barium and strontium carbonates) within its own organism. Published in Science on April 27, 2012, a study by French researchers reveals the existence of this new type of biomineralization, whose mechanism is still unknown. This finding has important implications for the interpretation of the ancient fossil record.

Cyanobacteria have long attracted scientists' attention. Capable of photosynthesis, these microorganisms have played a major role in Earth's history, in particular by contributing to the oxygenation of the atmosphere. Some are able to form calcium carbonate outside their cell, especially those associated with stromatolites, that date back some 3.5 billion years and are among the earliest traces of . Fossil cyanobacteria should therefore be present within this type of formation. However, the first fossil cyanobacteria go back a mere 700 million years, well after in the Earth's atmosphere started to rise some 2.3 billion years ago.

A French team may have found the reason for this long time lapse. In stromatolites collected in a crater lake in Mexico and cultured in the laboratory, the scientists discovered a new species of cyanobacterium, called Candidatus Gloeomargarita lithophora. This microorganism descends from a lineage that diverged early on in cyanobacteria. Thanks to an as yet unknown mechanism, this cyanobacterium forms intracellular calcium carbonate nanoparticles of around 270 nanometers (270 billionths of a meter). While some cyanobacteria were known to form extracellular calcium carbonate within stromatolites, their formation within the cell had never been observed. Another distinctive feature of the new species is that it accumulates strontium and barium and incorporates them into the carbonate.

This finding is significant for the interpretation of the ancient fossil record. If the cyanobacteria associated with stromatolites formed carbonates inside their cells rather than outside, they would not have been preserved in the fossil record. This would explain the time lapse between their earliest appearance (at least 2.3 billion years ago) and the oldest fossils discovered (700 million years ago). The next step is to find out why and how this cyanobacterium produces the .

Explore further: In the 'slime jungle' height matters

More information: An Early-Branching Microbialite Cyanobacterium Forms Intracellular Carbonates, Estelle Couradeau, Karim Benzerara, Emmanuelle Gérard, David Moreira, Sylvain Bernard, Gordon E. Brown Jr., Purificación López-García – Science, 27 April 2012

Related Stories

Mystery dissolves with calcium pump discovery

Nov 30, 2010

Geo-microbiologists from Arizona State University have solved a long-standing conundrum about how some photosynthetic microorganisms, endolithic cyanobacteria, bore their way into limestone, sand grains, mussel ...

Stepping stones through time

Oct 05, 2010

Stromatolites are the most ancient fossils on Earth, and these structures built by microbes can still be found forming today in various places around the globe. Although they provide a straight line of life’s ...

First Fossil-Makers in Hot Water

Mar 02, 2010

Microbe mats in Yellowstone's hot springs may be living analogs of the primordial microbe communities that constructed the oldest rock fossils on Earth.

Carbonate veins reveal chemistry of ancient seawater

Feb 05, 2010

The chemical composition of our oceans is not constant but has varied significantly over geological time. In a study published this week in Science, researchers describe a novel method for reconstructing past o ...

Recommended for you

Cell division speed influences gene architecture

11 hours ago

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

Secret life of cells revealed with new technique

13 hours ago

(Phys.org) —A new technique that allows researchers to conduct experiments more rapidly and accurately is giving insights into the workings of proteins important in heart and muscle diseases.

In the 'slime jungle' height matters

14 hours ago

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

Queuing theory helps physicist understand protein recycling

Apr 22, 2014

We've all waited in line and most of us have gotten stuck in a check-out line longer than we would like. For Will Mather, assistant professor of physics and an instructor with the College of Science's Integrated Science Curriculum, ...

User comments : 0

More news stories

Citizen scientists match research tool when counting sharks

Shark data collected by citizen scientists may be as reliable as data collected using automated tools, according to results published April 23, 2014, in the open access journal PLOS ONE by Gabriel Vianna from The University of Wes ...