Fighting bacteria's strength in numbers

May 17, 2012
The opportunistic pathogen Pseudomonas aeruginosa in a special growth media. This bacteria can cause life-threatening infection, particularly in cystic fibrosis sufferers. Credit: Dr. Steve Diggle, the University of Nottingham, UK

Scientists at The University of Nottingham have opened the way for more accurate research into new ways to fight dangerous bacterial infections by proving a long-held theory about how bacteria communicate with each other.

Researchers in the University's School of Molecular Medical Sciences have shown for the first time that the effectiveness of the bacteria's communication method, a process called 'quorum sensing', directly depends on the density of the bacterial population. This work will help inform wider research into how to stop bacteria talking to each other with the aim of switching off their toxin production.

As some are increasingly resistant to traditional antibiotics, around the world, including scientists at The University of Nottingham, are trying to find other ways of fighting infection. This new work involves using 'quorum quenching' compounds which interfere with bacterial signalling and disrupt their social lives.

Quorum sensing (QS) is the process by which bacteria communicate and co-operate using signal molecules which control, among other things, the production of toxins. QS is therefore an important factor in a number of that cause serious infection in humans including aeruginosa, a leading cause of death among sufferers, and MRSA which is a huge clinical problem in hospitals.

Leading the research at Nottingham, Dr Stephen Diggle said: "The fundamental assumption used to explain QS, is that the production of QS-controlled factors is not beneficial until a sufficient density of cells (a quorum) is present, and that the purpose of QS is to stimulate only when high enough bacterial are reached. For a pathogen this makes sense. Why produce toxins when there are not many cells around? Why not wait until a large number are present and coordinate production of toxin on mass which helps to overwhelm a host? This density assumption, upon which the entire QS field is based, has never been experimentally tested until now."

This ground-breaking research has just been published in the leading international journal, Proceedings of the National Academy of Sciences. It shows for the first time that cell density is an important factor in regulating QS in the opportunistic pathogen Pseudomonas aeruginosa. Using a combination of special growth media and molecular techniques, the work has shown that QS signalling occurs in low populations of cells but that there is no benefit to the bacteria of doing so. QS is therefore most useful to the bacteria at high cell densities.

A challenge for researchers in the future is to study this in more natural environments such as infections. Bacteria such as P. aeruginosa use QS to control toxin production and this new research helps to explain how certain infections can suddenly turn life threatening due to massive toxin release. This suggests that carefully controlling density within infections could be helpful in avoiding toxin-related damage.

Explore further: 'Conversation stoppers' fight deadly bacterial infections

Related Stories

'Conversation stoppers' fight deadly bacterial infections

September 11, 2006

Bacterial infections are becoming more deadly worldwide due to increased resistance to antibiotics. Now, chemists at the University of Wisconsin-Madison have developed a powerful strategy to fight these deadly infections: ...

Garlic hope in infection fight

January 31, 2007

Garlic has been hailed a wonder drug for centuries and has been used to prevent gangrene, treat high blood pressure, ward off common colds and is even believed by some to have cancer-fighting properties.

Bacteria 'launch a shield' to resist attack

November 2, 2009

Bacteria that cause chronic lung infections can communicate with each other to form a deadly shield against the body's natural defenses. Studying these interactions could lead to new ways of treating bacteria that are resistant ...

Bacteria toxic to wound-treating maggots

February 4, 2010

Bacteria that infect chronic wounds can be deadly to maggot 'biosurgeons' used to treat the lesions, show researchers writing in the journal Microbiology. The findings could lead to more effective treatment of wounds and ...

Recommended for you

Huddling rats behave as a 'super-organism'

September 3, 2015

Rodents huddle together when it is cold, they separate when it is warm, and at moderate temperatures they cycle between the warm center and the cold edges of the group. In a new study published in PLOS Computational Biology, ...

Fighting explosives pollution with plants

September 3, 2015

Biologists at the University of York have taken an important step in making it possible to clean millions of hectares of land contaminated by explosives.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.