Unusual protein helps regulate key cell communication pathway

Apr 23, 2012
Potassium ions (shown in purple) pass through the narrow opening of a large potassium channel to generate the electrical signals that allow cells to communicate with one another. Researchers at Washington University in St. Louis have shown how an unusual protein temporarily blocks these ions from the channel, which gives cells a chance to recover so they can continue firing. Credit: Lingle laboratory

Charged atoms, or ions, move through tiny pores, or channels, embedded in cell membranes, generating the electrical signals that allow cells to communicate with one another. In new research, scientists have shown how an unusual protein plays a key role in temporarily blocking the movement of ions through these channels. Preventing ions from moving through the channel gives cells time to recharge so that they can continue firing.

Tiny pores, or channels, embedded in cell membranes are critical to the healthy functioning of cells. Charged , or ions, move through these channels to generate the that allow cells to communicate with one another.

New research at Washington University School of Medicine in St. Louis unveils some of the inner workings of certain channels involved in regulating electrical signals in , relaxing and "tuning" in the inner ear.

In a report published April 22 in the advance online edition of the journal Nature, the scientists have shown how an unusual protein — one lacking any definable structure — plays a key role in temporarily blocking the movement of ions through these channels after a cell fires off an electrical signal. Preventing ions from moving through the channel is important because it gives cells time to recharge so that they can continue firing.

The researchers studied large potassium channels, called BK channels, which allow potassium to move in and out of cells. Looking at the channels gave the Washington University researchers an opportunity to see how so-called intrinsically disordered proteins can operate in cells.

They found that an intrinsically disordered protein was responsible for inactivating the BK channel. These proteins are of particular interest to scientists because they defy the long-held notion that a protein's precise 3-dimensional form determines its function.

Lingle, a professor of anesthesiology and of neurobiology, and his colleagues monitored the electrical activity of BK channels as they opened and closed. Despite the disordered nature of the unstructured protein that closes the channel, the researchers found that it nestles into a receptor inside the BK channel in a highly specific way. This lock-and-key mechanism is essential to closing, or inactivating, the channel.

"It's a two-step process, which distinguishes it from most other inactivation mechanisms that have been described," Lingle says. "My guess is that the part of the protein that binds to the potassium channel receptor may have to move through some very narrow spaces. It may be that by having a less-defined structure, the protein can navigate more easily through tight spaces and to get to the binding site."

Lingle and his colleagues are currently attempting to study how the channels behave in mouse cells to learn more about the physiological effects of BK channel behavior.

Problems in regulating BK channels are known to be involved in epilepsy, asthma and cardiovascular disease. A better understanding of the way those channels operate might help scientists think about new ways to treat these conditions and determine why the disordered domains that regulate these channels don't have a well-defined structure.

Explore further: Ocean microbes display remarkable genetic diversity

More information: Gonzalez-Perez V, Zeng X-H, Henzler-Wildman K, Lingle CJ. Stereospecific binding of a disordered peptide segment mediates BK channel inactivation. Nature, vol. 483, Advance Online Publication. DOI 10.1002/art.34396

Related Stories

Possible link between different forms of epilepsy found

Jun 16, 2008

Carnegie Mellon University neuroscientists have identified what may be the first known common denominator underlying inherited and sporadic epilepsy — a disruption in an ion channel called the BK channel. Although BK channels ...

Unraveling the mysteries of poison

Apr 13, 2006

Researchers from the Max Planck Institite for Biophysical Chemistry and other German and French colleagues have combined magnetic resonance spectroscopy (solid-state NMR) with special protein synthesis procedures to uncover ...

Complex channels

Jan 24, 2007

The messages passed in a neuronal network can target something like 100 billion nerve cells in the brain alone. These, in turn communicate with millions of other cells and organs in the body. How, then, do whole cascades ...

Drug prevents seizure progression in model of epilepsy

May 04, 2009

Carnegie Mellon University researchers have identified a new anticonvulsant compound that has the potential to stop the development of epilepsy. The findings are published in the March issue of the journal Epilepsia.

New clues to the structural dynamics of BK channels

Jul 14, 2011

BK channels (large-conductance, Ca2+-dependent K+ channels) are essential for the regulation of important biological processes such as smooth muscle tone and neuronal excitability. New research shows that BK channel activation ...

Recommended for you

Ocean microbes display remarkable genetic diversity

33 minutes ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

2 hours ago

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

Cell division speed influences gene architecture

Apr 23, 2014

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...