Trinity physicist finds new way to pack spheres efficiently

Apr 24, 2012
Dr Ho-Kei Chan demonstrates the challenge of packing as many spheres as possible into a cylinder.

(Phys.org) -- New collaborative research has revealed the most efficient method to date for packing spherical objects into a cylinder. Dr Ho-Kei Chan, a Research Fellow from the Foams and Complex Systems research group at Trinity’s School of Physics, has developed an algorithm for sphere packing which finds an arrangement in which the spheres fit as densely as possible into the cylinder provided, an issue that has a broad range of applications.

The theoretical study, which was recently reported in the journal , could have a number of practical applications on both the macro and the nano scale. Microfluidics researchers could benefit from the research when they are packing drug-delivery bubbles into tiny capillary tubes, material scientists could benefit when creating multi-walled nanotubes with nanospheres inside, and manufacturers when looking for more efficient shipping options for virtually anything spherical.

The research findings show that achieving the densest arrangement of spheres depended on having the right form or template at the bottom of the cylinder.  Previous attempts used flat bottomed cylinders, which nevertheless meant the spheres might shift out of alignment and into a less dense configuration.  Chan introduced a novel algorithm for obtaining the right template and showed that the densest packing can simply be constructed by depositing one by one into the cylinder.  Chan’s method works only for situations in which the ratio of the cylinder’s diameter to the sphere’s diameter is less than 2.7013, which are however very common.  If this ratio increases the algorithm becomes more complex, a problem that Chan is currently trying to solve based on further simulation results (to be published in Physical Review E) from Dr Adil Mughal of Aberystwyth University in Wales.  Earlier work of this Trinity-Aberystwyth collaboration includes a structural classification for such packing, which was reported in the journal Physical Review Letters.

Follow up work in the Foams and Complex Systems research group includes experiments with ball bearings and soap bubbles.  The group has recently attracted international attention for the solution of another packing problem, namely the laboratory realisation of the Weaire-Phelan structure which is famed for being the architectural design of the Beijing’s National Aquatics Centre.  Chan hopes that his spiral-like sphere packing will one day be also employed in architecture.

Explore further: Could 'Jedi Putter' be the force golfers need?

add to favorites email to friend print save as pdf

Related Stories

Foam bubbles finally brought to order

Dec 23, 2011

Scientists have succeeded for the first time to turn the Weaire-Phelan foam model – a celebrated geometrical concept which received additional notoriety when used in Beijing’s Olympic Games iconic ...

Microwaves to improve drug delivery

Aug 18, 2011

A team of Swinburne researchers has shown that low-temperature microwaves can be used to open up pores in bacterial cells, which could lead to significant improvements in the design of drug delivery systems.

Recommended for you

Could 'Jedi Putter' be the force golfers need?

16 hours ago

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...