Better treatment for tuberculosis possible with biochemist's findings

April 16, 2012

Recent discoveries by a Virginia Tech biochemist could lead to a more effective drug design to combat the bacteria responsible for tuberculosis infection. Spread through the air from one person to another, tuberculosis is responsible for approximately two million deaths per year, worldwide, and the emergence of drug resistant forms, specifically MDR- and XDR-TB, is an escalating challenge.

Once a person is infected with tuberculosis, he or she typically faces four to six months of treatment, if it is even available, using a combination of as many as six drugs. Symptoms include chest pain, coughing up blood, weakness, fever, and chills.

Marcy Hernick, an assistant professor of biochemistry and affiliated faculty member with the Fralin Life Science Institute, has discovered that the amino acid tyrosine plays several key roles in one enzyme involved in the pathogenesis of , the bacteria that causes tuberculosis. Tyrosine aids in the regulation of the binding and release of small molecules, as well as the chemistry carried out by the enzyme.

"When studying pathogenesis, we wanted to map out the active site of the enzyme to understand which amino acid chains were necessary for catalysis to occur," Hernick said. "We found a tyrosine residue on the structure that we wouldn't have thought to be important. But, after further analysis, we think tyrosine moves to carry out different steps in the ."

This information will be useful in the field of drug inhibitor design, Hernick explained, because scientists will want to develop a drug that can interact with tyrosine in order to alter . Hernicks findings were published in the Journal of Biological Chemistry this month.

Explore further: Discovery of tuberculosis bacterium enzyme paves way for new TB drugs

Related Stories

New avenues for overcoming tuberculosis drug resistance

April 27, 2010

Tuberculosis (TB) continues to be a global health problem, in part due to the exceptional drug resistance displayed by the TB-causing agent, Mycobacterium tuberculosis. Beyond even acquired drug resistance, these bacteria ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.