Topological transitions in metamaterials

April 14, 2012

The ability to control the flow of electrons using engineered materials is fundamental to the information technology revolution, yet many properties of matter are still unclear. Now a University of Alberta researcher is closer to understanding some of the exotic electronic properties in matter using optical analogues.

U of A electrical engineering researcher Zubin Jacob is the co-lead author on a study of the behaviour of photons flowing through metamaterials designed to emulate exotic electronic processes. Metamaterials are man-made nano materials, which can be used in applications as varied as future information networks, imaging and energy harvesting.

Jacob says think of metamaterials as an artificial medium that can control light. In order to control and use light in future optical circuitry, researchers need something as basic as an on-off switch for light-matter interaction. This research shows abrupt changes in the properties of an artificial medium imprints itself on light.

Zubin says we are five to 10 years away from the of such metamaterial based light-matter interaction control. One area of science that metamaterials can change on a shorter term is microscope technology. The ability of to compress the size of light will enhance the power of microscopes to nanoscopes that are able to reveal nanofeatures to the human eye.

The research was published April 13 in the journal Science.

The research team comes from the U of A, Purdue University as well as the Queens and City colleges of the City University of New York.

Explore further: Physicist developing, improving designer optical materials

More information: Topological Transitions in Metamaterials, Science 13 April 2012: Vol. 336 no. 6078 pp. 205-209 DOI: 10.1126/science.1219171 (ArXiv preprint)

Light-matter interactions can be controlled by manipulating the photonic environment. We uncovered an optical topological transition in strongly anisotropic metamaterials that results in a dramatic increase in the photon density of states—an effect that can be used to engineer this interaction. We describe a transition in the topology of the iso-frequency surface from a closed ellipsoid to an open hyperboloid by use of artificially nanostructured metamaterials. We show that this topological transition manifests itself in increased rates of spontaneous emission of emitters positioned near the metamaterial. Altering the topology of the iso-frequency surface by using metamaterials provides a fundamentally new route to manipulating light-matter interactions.

Related Stories

Using photons to manage data

November 2, 2011

Managing light to carry computer data, such as text, audio and video, is possible today with laser light beams that are guided along a fibre-optic cable. These waves consist of countless billions of photons, which carry information ...

Exotic metamaterials will change optics

March 18, 2012

Duke University engineers believe that continued advances in creating ever-more exotic and sophisticated man-made materials will greatly improve their ability to control light at will.

Recommended for you

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Apr 14, 2012
Upvoted for linking of preprint and abstract. It should become a rule for all science news - no matter how detailed in their subject they actually are.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.