Researchers develop novel technique for early detection of misfolded protein

April 6, 2012 By Karen B. Roberts
David W. Colby, assistant professor in the Department of Chemical and Biomolecular Engineering, and a team of researchers have developed a novel way to detect the misfolded protein, huntingtin, more sensitively than traditional methods. If successful, the technique may push promising therapies for Huntington's disease to clinical trial faster.

(Phys.org) -- University of Delaware assistant professor David W. Colby is co-author of a paper in the March 23 issue of the Journal of Biological Chemistry that suggests protein misfolding may occur early in the pathogenesis, or development, of Huntington’s disease.

Huntington’s disease (HD) is one of several neurological diseases, such as Alzheimer’s disease or prion disease, associated with proteins that fold into abnormal structures. HD is characterized by progressive motor impairment, cognitive decline and behavioral abnormalities, and ultimately death.

The researchers developed a novel technology, called an amyloid seeding assay (ASA), to detect the misfolded , huntingtin, in laboratory mice at 11 weeks of age, more sensitively than traditional histology methods which don’t reveal large inclusions until much later in the pathogenic process, about 78 weeks. 

According to Colby, the ASA takes advantage of the biophysical tendency of isolated misfolded huntingtin to act as a “seed” for the conversion of a monomeric polyglutamine peptide to a misfolded form, known as an amyloid fiber. 

This results in the formation of additional amyloid protein, essentially amplifying the amount of misfolded protein in the sample. The amyloid can then be detected with the dye Thioflavin T and measured by a fluorescent detector. 

“Alzheimer’s disease and brain tissue subjected to the same purification procedure did not do so, demonstrating the specificity of the ASA,” the paper states.

“Testing of experimental therapies is slow and expensive, given the time it takes for a misfolded protein to appear in a form detectable by traditional methods. We believe that the ASA can speed up this initial testing process and push promising therapies to clinical trial faster,” Colby said.

Explore further: Mutant proteins result in infectious prion disease in mice

Related Stories

Mutant proteins result in infectious prion disease in mice

December 5, 2008

A worldwide group of scientists has created an infectious prion disease in a mouse model, in a step that may help unravel the mystery of this progressive disease that affects the nervous system in humans and animals. The ...

Into the (mis)fold: a diagnostic tool for proteins

June 1, 2011

(PhysOrg.com) -- Alzheimer’s disease is the most common form of dementia, currently affecting more than 35 million people worldwide. Although many genetic and hereditary factors are thought to contribute to the telltale ...

Cellular stress can induce yeast to promote prion formation

July 23, 2011

It's a chicken and egg question. Where do the infectious protein particles called prions come from? Essentially clumps of misfolded proteins, prions cause neurodegenerative disorders, such as mad cow/Creutzfeld-Jakob disease, ...

Recommended for you

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.