How sperm and eggs develop precisely 23 chromosomes each

April 12, 2012
There are many "tools" that cells could use to separate DNA strands that cross over during meiosis. UC Davis researchers have identified the right tools for the job. Credit: Neil Hunter, UC Davis

Researchers at the University of California, Davis have discovered a key tool that helps sperm and eggs develop exactly 23 chromosomes each. The work, which could lead to insights into fertility, spontaneous miscarriages, cancer and developmental disorders, is published April 13 in the journal Cell.

Healthy humans have 46 chromosomes, 23 from the sperm and 23 from the egg. An embryo with the wrong number of chromosomes is usually miscarried, or develops disorders such as Down's syndrome, which is caused by an extra copy of .

During , the cell division process that creates sperm and eggs, matching chromosomes pair up and become connected by "crossing over" with each other, said Neil Hunter, a professor of microbiology at UC Davis and senior author of the new study.

These connections are essential for precise chromosome sorting and the formation of sperm and eggs with exactly the right numbers of chromosomes. Crossovers also play a fundamental role in evolution by allowing the chromosomes to swap chunks of DNA, introducing some variety into the next generation.

Each pair of must contain at least one crossover. But there shouldn't be more than about two crossovers per pair, or the genome could be destabilized.

In their paper, Hunter and his colleagues describe a "missing tool" that explains how crossovers are regulated.

"There must be enzymes that ensure at least one crossover, but not too many," said Hunter, who is also a member of the UC Davis Comprehensive Cancer Center research program.

Hunter, graduate students Kseniya Zakharyevich and Shangming Tang and research associate Yunmei Ma, looked for enzymes that could cut DNA to form crossovers in , which form sexual gametes, or , in much the same way that humans and other mammals form and eggs.

"There were several good candidates, but none turned out to play a major role," Hunter said.

Then they discovered the missing tool for crossing-over: three yeast enzymes, Mlh1, Mlh3 and Sgs1, which work together to cut DNA and make crossovers.

It turns out that the human equivalents of these enzymes are well known for their role in suppressing tumors. Human MLH1 and MLH3 are mutated in an inherited form of colon cancer. BLM, the human equivalent of Sgs1, is mutated in a cancer-prone disease called Bloom's Syndrome.

"Sgs1 was the biggest surprise," Hunter said. "We previously knew it as an that unwinds DNA to prevent crossovers. Its role in making crossovers had been hidden by other enzymes that can step in when it is absent."

"While other enzymes cut DNA randomly, Mlh1-Mlh3-Sgs1 only makes crossovers. This unique activity is essential for meiosis and its discovery is a huge step forward," he said.

Explore further: Unknotting DNA clue to cancer syndrome

Related Stories

Unknotting DNA clue to cancer syndrome

August 3, 2007

A new UC Davis study that explains the actions of a gene mutation that causes early onset cancer provides a fundamental insight into the mechanism of DNA-break repair.

Study Confirms DNA Repair Model After 26 Years

April 14, 2010

(PhysOrg.com) -- UC Davis researchers have confirmed a central idea about chromosome repair, more than a quarter century after it was first proposed. The finding is important to scientists who seek to understand DNA repair, ...

Hotspots found for chromosome gene swapping

November 29, 2007

Crossovers and double-strand DNA breaks do not occur randomly on yeast chromosomes during meiosis, but are greatly influenced by the proximity of the chromosome’s telomere, according to research in the laboratory of Whitehead ...

DNA and the 'magic rings' trick

October 11, 2010

(PhysOrg.com) -- A new study from UC Davis shows how, like a conjuring trick with interlocking rings, two interlocked pieces of DNA are separated after DNA is copied or repaired. The finding was published online Oct. 10 in ...

Recommended for you

Blueprint for shape in ancient land plants

December 9, 2016

Scientists from the Universities of Bristol and Cambridge have unlocked the secrets of shape in the most ancient of land plants using time-lapse imaging, growth analysis and computer modelling.

Protein disrupts infectious biofilms

December 8, 2016

Many infectious pathogens are difficult to treat because they develop into biofilms, layers of metabolically active but slowly growing bacteria embedded in a protective layer of slime, which are inherently more resistant ...

An anti-CRISPR for gene editing

December 8, 2016

Researchers have discovered a way to program cells to inhibit CRISPR-Cas9 activity. "Anti-CRISPR" proteins had previously been isolated from viruses that infect bacteria, but now University of Toronto and University of Massachusetts ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.