Solution to ancient rock puzzle posited

Apr 27, 2012
Solution to ancient rock puzzle posited

A superplume, or massive episode of volcanic eruptions that related to extensive melting of the Earth's mantle, could explain the puzzling reappearance of major iron formations long after the rise in atmospheric oxygen about 2.4 billion years ago, which should have prevented iron forming, according to a study published in Nature this week.

The research team, led by Professor Birger Rasmussen of Curtin University, includes Dr Janet Muhling from The University of Western Australia's Centre for Microscopy, Characterisation and Analysis.

are unique composed of iron and silica and are unlike any modern rocks, the study noted. Most iron formations were deposited in the oceans before free oxygen first accumulated in Earth's atmosphere about 2.4 billion years ago (the so-called Great Oxidation Event).

However, the re-occurrence of major iron formations nearly 500 million years later has been an enduring enigma for .

Major iron formations about 1.9-1.8 billion years old occur in both North America and Australia. However, because the Australian iron formations were thought to be significantly younger than those in North America, it was uncertain whether they provided information about the composition of the or conditions in a restricted or closed basin.

The new study has dated beds in the Australian iron formations, showing that they were deposited at the same time as those in North America.

"These results show that the deposition of iron formations from two different continents was synchronous 1.9 billion years ago and therefore probably reflects the composition of the global ocean," the study said. "The deposition of major iron formations shows a remarkable correlation in time with a short-lived but intense interval of global igneous activity, a possible mantle superplume event, which suggests that processes deep within the Earth radically changed the chemistry of the global ocean."

"We suggest that extensive basaltic magmatism related to the superplume released vast volumes of iron into the global ocean, overwhelming the supply of oxygen and promoting the of iron formations across the world," Dr Muhling said.

"The equally dramatic disappearance of iron formations some 40 million years later can be explained as a consequence of rapidly waning igneous (volcanic) activity that allowed the ocean to become dominated by seawater oxidants once more.

"Our findings not only explain the sudden appearance and disappearance of iron formations circa 1.9 billion years ago, but also provide an explanation for the preservation of an oxygen-rich atmosphere above an oxygen-poor ocean. The relationships between the chemistry of the hydrosphere and atmosphere, and deep Earth processes provide insights into significant events in the evolution of the Earth," Dr Muhling said.

Dr Muhling's co-researchers are from Curtin University, the WA Department of Mines and Petroleum's Geological Survey of WA, and the University of Manitoba in Canada.

Explore further: Likely near-simultaneous earthquakes complicate seismic hazard planning for Italy

add to favorites email to friend print save as pdf

Related Stories

Did a nickel famine trigger the 'Great Oxidation Event'?

Apr 08, 2009

(PhysOrg.com) -- The Earth's original atmosphere held very little oxygen. This began to change around 2.4 billion years ago when oxygen levels increased dramatically during what scientists call the "Great ...

Banded rocks reveal early Earth conditions, changes

Oct 11, 2009

(PhysOrg.com) -- The strikingly banded rocks scattered across the upper Midwest and elsewhere throughout the world are actually ambassadors from the past, offering clues to the environment of the early Earth ...

The rise of oxygen caused Earth's earliest ice age

May 07, 2009

(PhysOrg.com) -- Geologists may have uncovered the answer to an age-old question - an ice-age-old question, that is. It appears that Earth's earliest ice ages may have been due to the rise of oxygen in Earth's ...

Ocean iron and CO2 interaction studied

Apr 26, 2007

A French study suggested that iron supply changes from deep water to the ocean's surface might have a greater effect on atmospheric CO2 than thought.

Recommended for you

NASA radar system surveys Napa Valley quake area

10 hours ago

NASA scientists are conducting an airborne survey of earthquake fault displacements in the Napa Valley area of Northern California using a sophisticated radar system developed by NASA's Jet Propulsion Laboratory, ...

Aging Africa

Aug 29, 2014

In the September issue of GSA Today, Paul Bierman of the University of Vermont–Burlington and colleagues present a cosmogenic view of erosion, relief generation, and the age of faulting in southernmost Africa ...

NASA animation shows Hurricane Marie winding down

Aug 29, 2014

NOAA's GOES-West satellite keeps a continuous eye on the Eastern Pacific and has been covering Hurricane Marie since birth. NASA's GOES Project uses NOAA data and creates animations and did so to show the end of Hurricane ...

User comments : 0