In a small-device world, bigger may still be better

Apr 20, 2012

In the early days, standard computers could be as large as a single story house. Over the last several decades, many development efforts have focused on shrinking them for use in the home and eventually anywhere in the world — on the train, in a cave, you name it.

That is, if you want to use standard computer-based tools, like the Internet or iTunes. Today’s tiny devices are capable of crunching lots of data pretty quickly, but what if “lots of data” means tens or hundreds of terabytes or more, amounts that would take a typical PC days or weeks to process? For that we need supercomputers, which are still big and expensive.

Peter Desonyers, assistant professor in the College of Computer and Information Science, recently received a CAREER award from the National Science Foundation to explore solid-state drives, which are data-storage devices that use flash memory, as new computational tools. If successful, these devices could revolutionize the industry by making large-scale computation possible for the masses.

Flash was originally designed to replace hard drives as a faster data-storage method. “It is somewhat faster for large files than hard drives,” Desnoyers said. But more important, it is “far more nimble, able to switch from one small file to another at electronic speeds while a must wait for mechanical parts to move.”

The only problem is flash came too late. Over the last several decades, computer scientists have optimized software to run on hard drives. Anything that would run better on flash has not yet been designed. “We’ve stopped trying to do anything that involves complex data structures outside of the computer’s memory,” Desnoyers said. “We’ve stopped trying to do the things that flash is best at.”

Before computer scientists can start designing new uses for flash they must first understand how it behaves. In particular, Desnoyers’ team is looking at fragmentation, in which creating and deleting files over time causes a storage system to become randomly arranged.

Hard drives, Desnoyers explained, slow down but continue to work as they become fragmented. But flash must constantly defragment in order to work at all. It must constantly rearrange blocks of data like a sliding tiles puzzle, shuffling it between unoccupied areas in order to clear more space. This process causes the drive to run slower and eventually reduces its lifetime.

“We’re trying to understand it so we can design better algorithms to deal with it,” Desnoyers said.

In addition to making personal computers more powerful, solid-state storage devices could also extend the power of supercomputers beyond their current capacity. Desnoyers’ team is working with Oak Ridge National Laboratories to explore ways of making that possible.

Still, Desnoyers isn’t convinced that flash is the future of computing. “Disk is getting bigger and cheaper faster than flash is,” he said. “For to become really widespread, we need to develop new approaches to make it worth the price — it has to enable us to do things with computers that we couldn't do before.”

Explore further: Supercomputer for astronomy 'ATERUI' upgraded to double its speed

Related Stories

New tool enhances view of muscles

Jan 23, 2012

Simon Fraser University associate professor James Wakeling is adding to the arsenal of increasingly sophisticated medical imaging tools with a new signal-processing method for viewing muscle activation details that have never ...

Making surveillance cameras more efficient

Mar 05, 2012

A University of California, Riverside professor has recently co-authored a book about his surveillance camera research that has applications in everything from homeland security, environmental monitoring and home monitoring.

Recommended for you

Audi to develop Tesla Model S all-electric rival

8 hours ago

The Tesla Model S has a rival. Audi is to develop all-electric family car. This is to be a family car that will offer an all-electric range of 280 miles (450 kilometers), according to Auto Express, which ...

A green data center with an autonomous power supply

14 hours ago

A new data center in the United States is generating electricity for its servers entirely from renewable sources, converting biogas from a sewage treatment plant into electricity and water. Siemens implemented ...

After a data breach, it's consumers left holding the bag

15 hours ago

Shoppers have launched into the holiday buying season and retailers are looking forward to year-end sales that make up almost 20% of their annual receipts. But as you check out at a store or click "purchase" on your online shopping cart ...

Can we create an energy efficient Internet?

15 hours ago

With the number of Internet connected devices rapidly increasing, researchers from Melbourne are starting a new research program to reduce energy consumption of such devices.

Brain inspired data engineering

16 hours ago

What if next-generation ICT systems could be based on the brain's structure and its cognitive and adaptive processes? A groundbreaking paradigm of brain-inspired intelligent ICT architectures is being born.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Au-Pu
not rated yet Apr 21, 2012
Might not the real solution be a system that utilises the best of each system as opposed to an either or option?
chasehusky
5 / 5 (2) Apr 21, 2012
Flash isn't the future of computing for enterprise environments, at least according to some estimates, as NAND- and TLC-based SSD performance will hit a wall sometime around 2024 when the chip manufacturing is moved to a 6.5nm fabrication process:

L. M. Grupp, J. D. Davis, and S. Swanson, "The bleak future of NAND flash memory", Proc. of the USENIX Conference on File and Storage Technologies, 2012.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.