Slicing mitotic spindle with lasers, nanosurgeons unravel old pole-to-pole theory

April 26, 2012
The top shows a series of fluorescent images of a spindle taken before the cut and at 5 seconds and 10 seconds after the cut. Scale bar, 10 µm. The bottom shows a graphical representation of the cut microtubules. The cut generates new 'plus' ends (red) and new 'minus' ends (green). The newly generated minus ends remain stable, whereas the new plus ends depolymerize, which creates two depolymerization fronts of opposed polarity. Credit: Jan Brugués, Harvard School of Engineering and Applied Sciences.

The mitotic spindle, an apparatus that segregates chromosomes during cell division, may be more complex than the standard textbook picture suggests, according to researchers at the Harvard School of Engineering and Applied Sciences (SEAS).

The findings, which result from quantitative measurements of the , will appear tomorrow in the journal Cell.

The researchers used a femtosecond laser to slice through the strands of the organelle and then performed a to infer the of the spindle from its response to this damage.

"We've been using this nanosurgery technique to understand the architecture and assembly of the spindle in a way that was never possible before," says Eric Mazur, Balkanski Professor of Physics and Applied Physics at Harvard, who co-authored the study. "It's very exciting."

The spindle, which is made of protein strands called , forms during and segregates into the . It was previously unclear how microtubules are organized in the spindles of , and it was often assumed that the microtubules stretch along the length of the entire structure, pole to pole.

This video is not supported by your browser at this time.
A pulse from the femtosecond laser slices through the mitotic spindle, causing the damaged microtubules to depolymerize. Meanwhile, undamaged and newly nucleated microtubules continue growing and soon fill the gap. Credit: Jan Brugués, Harvard School of Engineering and Applied Sciences.

Mazur and his colleagues demonstrated that the microtubules can begin to form throughout the spindle. They also vary in length, with the shortest ones close to the poles.

"We wondered whether this size difference might result from a gradient of microtubule stabilization across the spindle, but it actually results from transport," says lead author Jan Brugués, a postdoctoral fellow at SEAS. "The microtubules generally nucleate and grow from the center of the spindle, from which point they are transported towards the poles. They disassemble over the course of their lifespan, resulting in long, young microtubules close to the midline and older, short microtubules closer to the poles."

"This research provides concrete evidence for something that we've only been able to estimate until now," Brugués adds.

Mazur and Brugués worked with Daniel Needleman, Assistant Professor of Applied Physics and Molecular and Cellular Biology at Harvard, and Valeria Nuzzo, a former postdoctoral fellow in Mazur's lab at SEAS, to bring the tools of to bear on a biological question.

The team used a to make two small slices perpendicular to the plane of growth of the spindle apparatus in egg extracts of the frog species Xenopus laevis.

They were then able to collect quantitative data on the reconstruction of the spindle following this disruption and precisely determine the length and polarity of individual microtubules. Observing the speed and extent of depolymerization (unraveling) of the spindle, the team worked backwards to compile a complete picture of the beginning and end points of each microtubule. Finally, additional experiments and a numerical model confirmed the role of transport.

"The laser allowed us to make precise cuts and perform experiments that simply were not possible using previous techniques," says Mazur.

With further inquiries into spindle architecture, the researchers hope that scientists will one day have a complete understanding, and possibly even control over, the formation of the spindle.

"Understanding the spindle means understanding cell division," notes Brugués. "With a better understanding of how the spindle is supposed to operate, we have more hope of tackling the range of conditions—from cancer to birth defects—that result from disruptions to the cell cycle or from improper chromosomal segregation."

Explore further: Researchers work out the mechanics of asymmetric cell division

Related Stories

A unique arrangement for egg cell division

August 9, 2007

Which genes are passed on from mother to child is decided very early on during the maturation of the egg cell in the ovary. In a cell division process that is unique to egg cells, half of the chromosomes are eliminated from ...

Scientists deconstruct cell division

February 8, 2009

The last step of the cell cycle is the brief but spectacularly dynamic and complicated mitosis phase, which leads to the duplication of one mother cell into two daughter cells. In mitosis, the chromosomes condense and the ...

Live imaging puts new light on stem cell division

September 1, 2010

(PhysOrg.com) -- A long-held assumption about asymmetrical division of stem cells has cracked. Researchers at the University of Oregon report that the mitotic spindle does not act alone -- that cortical proteins help to position ...

Recommended for you

Research advances on transplant ward pathogen

August 28, 2015

The fungus Cryptococcus causes meningitis, a brain disease that kills about 1 million people each year—mainly those with impaired immune systems due to AIDS, cancer treatment or an organ transplant. It's difficult to treat ...

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.