Researchers strive to simulate turbulent combustion in aerospace applications

Apr 18, 2012

A research team at the University of Pittsburgh is developing quantum-computing algorithms to better model turbulent combustion in aerospace applications.

A five-year U.S. Air Force grant was awarded this month to principal investigator Peyman Givi, the James T. MacLeod Professor in the Swanson School of Engineering, who is working with faculty members from Pitt's Kenneth P. Dietrich School of Arts and Sciences and Center for Simulation and Modeling.

"Most people think of as unsettling or chaotic because of their experiences on planes," said Givi. "But when it comes to engines, the hope is to make it as turbulent as possible. It's like putting cream in your coffee. The more you mix it, the better it'll taste or perform."

The impetus for the Pitt team's research is centered on the fact that despite its emergence more that two decades ago, quantum computing based on hasn't been used in aerospace applications, said Givi. Because the nondeterministic nature of Givi's classical equations for turbulence, the Pitt research team—Pitt physics and astronomy professors Andrew Daley and Jeremy Levy and the Center for Simulation and Modeling research professor S. Levent Yilmaz—thought there might be a way to solve the equations on quantum computers, rapidly speeding up the process of modeling turbulent combustion.

"We've developed equations that can model turbulent combustion very accurately, and we've been successful in solving them on today's classical computers," said Givi. "Now, with the help of this grant, we will formulate these equations in such a way that they can be solved on quantum computers."

Because quantum computers have yet to be actualized, Daley and Levy will be looking at different concepts on how one might go about building quantum computers so the researchers can make hardware that acts like a quantum machine. And even though Einstein himself advised scientists to avoid the unsolved field of turbulence, the team is hoping the use of will make great strides toward solving the problem.

"If some of the things we are thinking do work and eventually we do achieve this, a process that could take weeks or months will transpire in minutes," said Givi. "It really is a quantum leap."

Explore further: Photon 'afterglow' could transmit information without transmitting energy

Related Stories

Quantum Computer Science on the Internet

Jul 31, 2004

A simulated quantum computer went online on the Internet last month. With the ability to control 31 quantum bits, it is the most powerful of its type in the world. Software engineers can use it to test algorithms that might o ...

New supercomputer to be unveiled

Feb 12, 2007

A Canadian firm is claiming to have taken a quantum leap in technology by producing a computer that can perform 64,000 calculations at once.

Recommended for you

Scientists succeed in linking two different quantum systems

Mar 30, 2015

Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

Theory of the strong interaction verified

Mar 26, 2015

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.