New sensor sought to enable military missions in GPS-denied areas

Apr 17, 2012

Many U.S. Military systems, such as missiles, rely on the Global Positioning System (GPS) to provide accurate position, orientation and time information while in flight. When GPS is inaccessible, whether as a result of a malfunction or as a consequence of enemy action, information critical for navigation must be gathered using the missile's on-board sensors.

DARPA’s Chip-Scale Combinatorial Atomic Navigator (C-SCAN) effort seeks an atomic inertial sensor to measure orientation in GPS-denied environments. Such a sensor would integrate small size, low power consumption, high resolution of motion detection and a fast start up time into a single package.

“Platforms such as missiles rely on GPS for a variety of information,” explained Andre Shkel, program manager. “When GPS is not available gyroscopes provide orientation, accelerometers provide position and oscillators provide timing. The new C-SCAN effort focuses on replacing bulky gyroscopes with a new inertial measurement unit (IMU) that is smaller, less expensive due to foundry fabrication and yields better performance.”

The inertial measurement unit sought by C-SCAN will co-integrate both solid state and atomic inertial into a single microsystem. This new IMU would benefit from devices with dissimilar physics, yet complementary characteristics: short startup times, and long-term, stable performance.

Before C-SCAN can be built, research is needed to explore the miniaturization and co-fabrication of atomic sensors with solid-state inertial sensors. Algorithms and architectures are sought to seamlessly co-integrate the components. Those wishing to participate in the C-SCAN effort are encouraged to review the full solicitation located at www.fbo.gov.

Explore further: Nature's elegant and efficient vision systems can detect cancer

add to favorites email to friend print save as pdf

Related Stories

GPS not working? A shoe radar may help you find your way

Dec 01, 2010

(PhysOrg.com) -- The prevalence of global positioning system (GPS) devices in everything from cars to cell phones has almost made getting lost a thing of the past. But what do you do when your GPS isn’t working? Researchers ...

Real pilots and 'virtual flyers' go head-to-head

Oct 15, 2008

(PhysOrg.com) -- Stunt pilots have raced against computer-generated opponents for the first time — in a contest that combines the real and the 'virtual' at 250 miles per hour.

Time recording up one's sleeve

Jan 03, 2012

Optimized operations are essential to globally competitive companies. Until now, inspectors have timed procedures, usually manually, in order to organize manual assembly operations efficiently – a method ...

Proposed nuclear clock may keep time with the Universe

Mar 08, 2012

(PhysOrg.com) -- A proposed new time-keeping system tied to the orbiting of a neutron around an atomic nucleus could have such unprecedented accuracy that it neither gains nor loses 1/20th of a second in 14 ...

Recommended for you

Wireless sensor transmits tumor pressure

Sep 20, 2014

The interstitial pressure inside a tumor is often remarkably high compared to normal tissues and is thought to impede the delivery of chemotherapeutic agents as well as decrease the effectiveness of radiation ...

Seeing through the fog (and dust and snow) of war

Sep 19, 2014

Degraded visibility—which encompasses diverse environmental conditions including severe weather, dust kicked up during takeoff and landing and poor visual contrast among different parts of terrain—often ...

The oscillator that could makeover the mechanical watch

Sep 18, 2014

For the first time in 200 years the heart of the mechanical watch has been reinvented, thereby improving precision and autonomy while making the watch completely silent. EPFL researchers have developed an ...

User comments : 0