New sensor sought to enable military missions in GPS-denied areas

Apr 17, 2012

Many U.S. Military systems, such as missiles, rely on the Global Positioning System (GPS) to provide accurate position, orientation and time information while in flight. When GPS is inaccessible, whether as a result of a malfunction or as a consequence of enemy action, information critical for navigation must be gathered using the missile's on-board sensors.

DARPA’s Chip-Scale Combinatorial Atomic Navigator (C-SCAN) effort seeks an atomic inertial sensor to measure orientation in GPS-denied environments. Such a sensor would integrate small size, low power consumption, high resolution of motion detection and a fast start up time into a single package.

“Platforms such as missiles rely on GPS for a variety of information,” explained Andre Shkel, program manager. “When GPS is not available gyroscopes provide orientation, accelerometers provide position and oscillators provide timing. The new C-SCAN effort focuses on replacing bulky gyroscopes with a new inertial measurement unit (IMU) that is smaller, less expensive due to foundry fabrication and yields better performance.”

The inertial measurement unit sought by C-SCAN will co-integrate both solid state and atomic inertial into a single microsystem. This new IMU would benefit from devices with dissimilar physics, yet complementary characteristics: short startup times, and long-term, stable performance.

Before C-SCAN can be built, research is needed to explore the miniaturization and co-fabrication of atomic sensors with solid-state inertial sensors. Algorithms and architectures are sought to seamlessly co-integrate the components. Those wishing to participate in the C-SCAN effort are encouraged to review the full solicitation located at www.fbo.gov.

Explore further: Lifting the brakes on fuel efficiency

add to favorites email to friend print save as pdf

Related Stories

GPS not working? A shoe radar may help you find your way

Dec 01, 2010

(PhysOrg.com) -- The prevalence of global positioning system (GPS) devices in everything from cars to cell phones has almost made getting lost a thing of the past. But what do you do when your GPS isn’t working? Researchers ...

Real pilots and 'virtual flyers' go head-to-head

Oct 15, 2008

(PhysOrg.com) -- Stunt pilots have raced against computer-generated opponents for the first time — in a contest that combines the real and the 'virtual' at 250 miles per hour.

Time recording up one's sleeve

Jan 03, 2012

Optimized operations are essential to globally competitive companies. Until now, inspectors have timed procedures, usually manually, in order to organize manual assembly operations efficiently – a method ...

Proposed nuclear clock may keep time with the Universe

Mar 08, 2012

(PhysOrg.com) -- A proposed new time-keeping system tied to the orbiting of a neutron around an atomic nucleus could have such unprecedented accuracy that it neither gains nor loses 1/20th of a second in 14 ...

Recommended for you

Lifting the brakes on fuel efficiency

Apr 18, 2014

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.