Scientists solve a mystery of bacterial growth and resistance

Apr 26, 2012
Lars Plate is a graduate student in Michael Marletta's laboratory at the Scripps Research Institute. Credit: Photo courtesy of the Scripps Research Institute

Scientists at The Scripps Research Institute have unraveled a complex chemical pathway that enables bacteria to form clusters called biofilms. Such improved understanding might eventually aid the development of new treatments targeting biofilms, which are involved in a wide variety of human infections and help bacteria resist antibiotics.

The report, published online ahead of print on April 26, 2012, by the journal Molecular Cell, explains how nitric oxide, a signaling molecule involved in the immune system, leads to biofilm formation.

"It is estimated that about 80 percent of human pathogens form biofilms during some part of their ," said Scripps Research president and CEO Michael Marletta, PhD, who led the work. "In this study, we have detailed for the first time the signaling pathway from nitric oxide to the sensor through cellular regulators and on to the biological output, biofilm formation."

"There's a lot of interest right now in finding ways to influence biofilm formation in bacteria," said lead author Lars Plate, a graduate student in Marletta's team, which recently moved to Scripps Research from the University of California, Berkeley. "Figuring out the signaling pathway is a prerequisite for that."

Dangerous Get Togethers

Biofilm formation is a critical phenomenon that occurs when adhere to each other and to surfaces, at times as part of their growth stage and at other times to gird against attack. In such aggregations, cells on the outside of a biofilm might still be susceptible to natural or pharmaceutical antibiotics, but the interior cells are relatively protected. This can make them difficult to kill using .

Biofilms can form on such as or , leading to potentially . Likewise, difficult-to-eliminate biofilms also play key roles in a host of conditions from to cholera, and from to Legionnaires' disease.

For years, the Marletta lab and other groups have been studying how nitric oxide regulates everything from blood vessel dilation to nerve signals in humans and other vertebrates. Past research had also revealed that nitric oxide is involved in influencing bacterial biofilm formation.

Nitric oxide in sufficient quantity is toxic to bacteria, so it's logical that nitric oxide would trigger bacteria to enter the safety huddle of a biofilm. But nobody knew precisely how.

In the new study, the scientists set out to find what happens after the nitric oxide trigger is pulled. "The whole project was really a detective story in a way," said Plate.

The Detective Story

In vertebrates, nitric oxide can bind to something called the Heme-Nitric Oxide/Oxygen (H-NOX) binding domain on a specific enzyme, activating that enzyme and beginning the chemical cascades that lead to physiological functions such as blood vessel dilation.

Many bacteria also have H-NOX domains, including key pathogens, so this seemed the best starting point for the investigation. From there, the team turned to genomic data.

Genes for proteins that interact are often found adjacent to one another. Based on this fact, the researchers were able to infer a connection between the bacterial H-NOX domain and an enzyme called histidine kinase, which transfers phosphate chemical groups to other molecules in signaling pathways. The question was where the phosphates were going.

To learn more, the researchers used a technique called phosphotransfer profiling. This involved activating the histidine kinase and then allowing them to react separately with about 20 potential targets. Those targets that the histidine kinase rapidly transferred phosphates to had to be part of the . "It's a neat method that we used to get an answer that was in fact very surprising," said Plate.

The experiments revealed that the histidine kinase phosphorylated three proteins called response regulators that work together to control biofilm formation for the project's primary study species, the bacterium Shewanella oneidensis, which is found in lake sediments.

Further work showed that each regulator plays a complementary role, making for an unusually complex system. One regulator activates gene expression, another controls the activity of an enzyme producing cyclic diguanosine monophosphate, an important bacterial messenger molecule that is critical in biofilm formation, and the third tunes the degree of activity of the second.

Divide and Conquer

Since other bacterial species use the same uncovered in this study, the findings pave the way to further explore the potential for pharmaceutical application. As one example, researchers might be able to block biofilm formation with chemicals that interrupt the activity of one of the components of this nitric oxide cascade.

Marletta's group has already explored nitric oxide's role in controlling Legionnaires' disease and, among other goals, will focus now on understanding biofilm formation in the bacterium that causes .

Explore further: Researchers successfully clone adult human stem cells

More information: "Nitric oxide modulates bacterial biofilm formation through a multi-component cyclic-di-GMP signaling network," Molecular Cell.

Related Stories

Key regulators for biofilm development discovered

Jun 24, 2011

They can be found everywhere -- organized communities of bacteria sticking to surfaces both inside and outside the body. These biofilms are responsible for some of the most virulent, antibiotic-resistant infections in humans; ...

Nitric oxide shown to cause colon cancer

Jan 20, 2009

(PhysOrg.com) -- Researchers long ago established a link between inflammation, cancer and the compound nitric oxide, which may be produced when the immune system responds to bacterial infections, including those of the colon. ...

Small molecule triggers bacterial community

Dec 22, 2008

While bacterial cells tend to be rather solitary individuals, they are also known to form intricately structured communities called biofilms. But until now, no one has known the mechanisms that cause isolated bacteria to ...

Genes that make bacteria make up their minds

Mar 30, 2009

Bacteria are single cell organisms with no nervous system or brain. So how do individual bacterial cells living as part of a complex community called a biofilm "decide" between different physiological processes (such as movement ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.