Scientists use new method to zero in on source of tropical clouds

April 26, 2012
A CALIPSO satellite image provides a unique vertical view of the atmosphere. This nighttime image shows cirrus clouds from both formation mechanisms at the top of the troposphere, about 15-20 km (vertical axis indicates altitude). The satellite’s remote sensing techniques use laser light that reflects off cloud and aerosol particles. Light from the LiDAR does not penetrate thick clouds, thus masking the regions directly below them. The path of the satellite is annotated on the horizontal axis. CALIPSO is part of the National Aeronautics and Space Administration (NASA) A-Train Constellation of satellites that has been taking global aerosol and cloud measurements since 2006.

(Phys.org) -- High above the Earth, clouds too thin to see cover the tropics. Scientists at Pacific Northwest National Laboratory have found a creative technique to identify the clouds' origins. Using several satellite data sources, they identified cloud formation mechanisms that occur in two distinct conditions. Knowing the different formation mechanisms will help scientists predict the amount of water vapor in the upper atmosphere, which affects the balance of warming and cooling that determines the Earth's climate. Their research was published in the Journal of Geophysical Research.

Like a middle-aged pudge, the Earth's atmosphere is a bit thick around the equatorial middle. Clouds at the height of this bulge are so high and wispy they are invisible to the human eye. Nevertheless, the water content in these clouds has a on the climate, letting sunlight pass down to warm the surface but not letting heat reflected from the surface escape. Because these clouds blanket vast areas of the tropics, the heating effect influences long-term climate changes. Scientists are pinpointing the source of these clouds to quantify water vapor in the , which helps with predictions.

Tropical Tropopause Layer Cirrus (TTLC) clouds are so high in the atmosphere and so thin their formation can't be seen with the eye, and current instrument detection methods only capture a one dimensional picture of the clouds. Scientists at PNNL devised a novel method to detect how the clouds are formed.

Typical identification of TTLC formation has been through statistical methods using correlations of temperature and the frequency of the TTLC, or using back trajectories of TTLC that eventually traced to convection. In this study, the researchers compared the "object classification" detection method, which combined adjacent Cloud-Aerosol LiDAR and Infrared Pathfinder (CALIPSO) profiles to identify the clouds as objects, and the statistical and back trajectory methods.

Using three years of CALIPSO data they identified optically thick clouds in the layer, which in the tropics are associated with deep convection. Classifying the cloud "objects" as either convective or non-convective, they were able to classify which clouds are formed from anvil clouds that can increase water vapor, or formed in situ in supercooled conditions that can dry out the layer.

Using the frequency of different mechanisms calculated in this research, future studies can make more accurate calculations of the climate impacts of these clouds through humidity and atmospheric heating near the tropopause.

Explore further: Cloud formation affected by human activity, study says

More information: Riihimaki LD, SA McFarlane, C Liang, ST Massie, N Beagley, and TD Toth. 2012. "Comparison of Methods to Determine Tropical Tropopause Layer Cirrus Formation Mechanisms," Journal of Geophysical Research, 117, D06218, DOI:10.1029/2011JD016832

Related Stories

Cloud formation affected by human activity, study says

September 12, 2006

University of Toronto researchers and their collaborators have discovered that solid ammonium sulphate aerosol – an airborne particle more prevalent in continental areas - can act as a catalyst to the formation of ice clouds, ...

Ice heating up cold clouds

September 21, 2011

In the Arctic, competition within clouds is hot. The small amount of heat released when water vapor condenses on ice crystals in Arctic clouds, which contain both water and ice, determines the cloud's survival, according ...

The birth of a cloud droplet

October 31, 2011

(PhysOrg.com) -- Wrapped in mystery, the formation of a cloud droplet comes down to physics. Pacific Northwest National Laboratory led a research team that has helped peel away another layer of the cloud droplet conundrum. ...

Recommended for you

New study sheds light on end of Snowball Earth period

August 24, 2015

The second ice age during the Cryogenian period was not followed by the sudden and chaotic melting-back of the ice as previously thought, but ended with regular advances and retreats of the ice, according to research published ...

Earth's mineralogy unique in the cosmos

August 26, 2015

New research from a team led by Carnegie's Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be duplicated anywhere in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.