Scientists forecast forest carbon loss

April 6, 2012

For more than 30 years, scientists at the Harvard Forest have scaled towers into the forest canopy and measured the trunks of trees to track how much carbon is stored or lost from the woods each year. This treasure trove of data is part of the national Long-Term Ecological Research (LTER) Network, which is celebrating more than three decades of research this month. This important milestone is marked by six new papers released today in a special issue of the journal BioScience.

When most people look at a forest, they see walking trails, deer yards, or firewood for next winter. But scientists at the Harvard Forest and Smithsonian Institution take note of changes imperceptible to the naked eye -- the uptake and storage of carbon. What they've learned in a recent study is that an immense amount of carbon is stored in growing trees, but if current trends in Massachusetts continue, development would reduce that storage by 18 percent over the next half century. Forest harvesting would have a much smaller impact.

Jonathan Thompson is Research Ecologist at the Smithsonian Conservation Biology Institute, Research Associate at the Harvard , and lead author on the paper which appeared in the journal Ecological Applications in late 2011. "The rebounding forests of New England provide a tremendous public benefit by storing carbon that would otherwise contribute to ," said Thompson. To put these findings into context he adds, "In Massachusetts, forests capture approximately 2.3 million metric tons of carbon each year. That's equal to the amount of carbon dioxide emitted from the energy used by one million American homes annually." He and his coauthors were able to estimate the extent to which development may chip away at that carbon sink, using an uncommon collection of long-term data and a distinct form of research known as scenario science.

For more than 30 years, scientists at the Harvard Forest have scaled towers into the and measured the trunks of trees to track how much carbon is stored or lost from the woods each year. This of data is part of the national Long-Term Ecological Research (LTER) Network, which is celebrating more than three decades of research this month. This important milestone is marked by six new papers released today in a special issue of the journal BioScience. The forest carbon research is one example of participatory scenario science -- a growing trend in ecology featured in a paper by Thompson, David Foster, Director of the Harvard Forest, and their colleagues in the BioScience issue.

Harvard Forest is one of four LTER sites in the northeastern U.S. and was awarded a grant by the National Science Foundation to join the Network in 1988. David Foster coauthored the paper of 2011 and co-edited the new BioScience special issue. He notes, "With three decades of data meticulously collected as part of the LTER Network, we have reached a crucial transition where we are now able to tackle major environmental challenges, such as the fate of forest carbon, across large landscapes."

Foster adds, "Over the last two centuries, forests have stored more with each passing year in many parts of New England, but the turning point may be in sight for Massachusetts and other urbanizing landscapes if recent development trends continue." But that's not the end of the story for Foster: "The good news is that forests are resilient and history is not necessarily destiny. Our research makes a compelling case for expanding support for forestland protection and for the efforts of private landowners to keep their land forested. It reminds us that forests provide important infrastructure that we should invest in, just as we do major civil works projects." Foster, Thompson, and their colleagues made a case for doing just that in their 2010 work, Wildlands and Woodlands: A Vision for the New England Landscape. And, as you might expect, that work was featured as a ground-breaking example of science serving society in another of the BioScience papers released today.

Explore further: Seeing The Forest And The Trees

Related Stories

Seeing The Forest And The Trees

October 24, 2005

With human emissions of carbon dioxide on the rise, there is growing interest in maintaining the Earth's natural mechanisms that absorb and store carbon.

Forests absorb one third our fossil fuel emissions

July 15, 2011

The world's established forests remove 2.4 billion tonnes of carbon per year from the atmosphere – equivalent to one third of current annual fossil fuel emissions – according to new research published in the journal ...

World's forests' role in carbon storage immense, profound

July 18, 2011

Until now, scientists were uncertain about how much and where in the world terrestrial carbon is being stored. In the July 14 issue of Science Express, scientists report that, between 1990 and 2007, the world's forests stored ...

Recommended for you

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

Reprogramming the oocyte

August 26, 2015

(Phys.org)—Among other things, the egg is optimized to process the sperm genome. The cytoplasmic factors that make this possible also give the egg the ability to reprogram the nuclei from other kinds of cells if these nuclei ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.