Quantum information motion control is now improved

April 3, 2012

Physicists have recently devised a new method for handling the effect of the interplay between vibrations and electrons on electronic transport. Their paper is about to be published in the European Physical Journal B. This study, led by scientists from Zhejiang University, Hangzhou, China, and the Centre for Computational Science and Engineering at the National University of Singapore, could have implications for quantum computers due to improvements in the transport of discrete amounts of information, known as qubits, that are encoded in electrons.

The authors created an model to assess electrons' current fluctuations when they are subjected to quantized modes of vibration, also known as . In the model, phonons are induced by a nanomechanical resonator. To better monitor electron transport, it is coupled to a system that was chosen for its ability to confine one or several electrons, called double quantum dot (DQD). Unlike previous studies, this work imposed arbitrary strong coupling regimes between electrons in the DQD and the phonons produced by the resonator.

The authors successfully controlled the excitations of the phonons without impacting the transport of . To do so, they decoupled the electron-phonon interaction by the so-called coherent phonon states method, which is based on reaching resonance modes of phonons. They have shown that when the energy excess between the two of the DQD system is sufficient to create an integer number of phonons, electrons can reach resonance and tunnel from one quantum dot to the other. In strong electron-phonon coupling regimes, multi-phonon excitations can thus enhance the electron transport.

As the electron-phonon coupling becomes even stronger, the phenomenon of phonon scattering represses electron transport and confines the electrons. The fluctuations of electron current could therefore be controlled by tuning the electron-phonon coupling, which makes it a good quantum switch to control the transport of information in quantum computers.

Explore further: Single-electron ammeter based on bidirectional counting of single-electrons

More information: Wang C., Ren J., Li B., Chen Q-H. (2012), Quantum transport of double quantum dots coupled to an oscillator in arbitrary strong coupling regime, European Physical Journal B (EPJ B). DOI 10.1140/epjb/e2012-30027-1

Related Stories

Quantum leap for phonon lasers

February 22, 2010

Physicists have taken major step forward in the development of practical phonon lasers, which emit sound in much the same way that optical lasers emit light. The development should lead to new, high-resolution imaging devices ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.