Proteogenomic strategies help refine annotations of three Yersinia strains

Apr 12, 2012
3-D representation of Y. pestis, the cause of bubonic plague.

(Phys.org) -- Strains of bacteria from the genus Yersinia are pathogenic with a wide virulence range -- Y. pseudotuberculosis causes intestinal distress, and Y. pestis causes the plague.

To better understand and potentially design ways to mitigate the effects of Yersinia on human health, a research team took on the task of refining the genome maps of three Yersinia strains.

This annotation process used the and , or collections of proteins and transcripts present, to discover new information about the genome.

The team used both proteomic and microarray data to study the highly related pathogenic Yersinia strains, Y. pestis CO92, Y. pestis Pestoides F, and Y. pesudotuberculosis PB1/+.

Each bacteria was grown under conditions relevant to disease, and samples were collected through time. Each proteomic sample was subjected to digestion then strong cation exchange fractionation with analysis on one of EMSL’s mass spectrometers.

Peptide data were searched against translations of all six possible reading frames of each genome using SEQUEST software to identify the proteins present in each bacteria sample.

Excitingly, data confirmed the validity of nearly 40% of the computationally predicted genes and discovered 28 novel proteins expressed under conditions relevant to infections.

In addition, 68 previously identified protein coding sequences were shown to be invalid. This new multi-faceted approach layers several types of evidence and substantially improves the genome annotation process.

Importantly, the team’s work established refined genome annotations that provide essential information needed for a better understanding of how the plague functions, may provide new targets for therapeutics, and should speed the characterization of other pathogenic bacteria.

Explore further: Compound from soil microbe inhibits biofilm formation

More information: Rutledge AC, et al. 2012. " Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae." PLoS One 7(3):e33903. doi:10.1371/journal.pone.0033903

Related Stories

Plague proteome reveals proteins linked to infection

Nov 22, 2006

Recreating growth conditions in flea carriers and mammal hosts, Pacific Northwest National Laboratory scientists have uncovered 176 proteins and likely proteins in the plague-bacterium Yersinia pestis whose numbers rise ...

How plague-causing bacteria disarm host defense

May 24, 2007

Effector proteins are the bad guys that help bacterial pathogens do their job of infecting the host by crippling the body's immune system. In essence, they knock down the front door of resistance and disarm the cell's alarm ...

Mimic molecules to protect against plague

Jul 04, 2008

Bacteria that cause pneumonic plague can evade our first-line defences, making it difficult for the body to fight infection. In fact, a signature of the plague is the lack of an inflammatory response. Now, scientists have ...

Recommended for you

Compound from soil microbe inhibits biofilm formation

15 hours ago

Researchers have shown that a known antibiotic and antifungal compound produced by a soil microbe can inhibit another species of microbe from forming biofilms—microbial mats that frequently are medically harmful—without ...

Researcher among best in protein modeling contests

18 hours ago

A Purdue University researcher ranks among the best in the world in bioinformatics competitions to predict protein structure, docking and function, making him a triple threat in the world of protein modeling.

Survey of salmonella species in Staten Island Zoo's snakes

19 hours ago

For humans, Salmonella is always bad news. The bacterial pathogen causes paratyphoid fever, gastroenteritis and typhoid. But for snakes, the bacteria aren't always bad news. Certain species of Salmonella are a natural part ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.