Portable gas sensors improve atmospheric pollution measurements

Apr 30, 2012
Remote-controlled robotic helicopter in flight with a laser-based greenhouse gas sensor extending from its nose. The aerial detector is easy to deploy, inexpensive to operate, can be guided by GPS, and provides measurements in both vertical and horizontal directions. Credit: Department of Civil and Environmental Engineering, Princeton University

Different types of compact, low-power portable sensors under development by three independent research groups may soon yield unprecedented capabilities to monitor ozone, greenhouse gases, and air pollutants. The three teams will each present their work at the Conference on Lasers and Electro-Optics (CLEO: 2012 ), to be held May 6-11, in San Jose, Calif.

Princeton University engineer Amir Khan and colleagues, working with space scientists at the University of Texas at Dallas, will discuss how their teams combined a compact, low-power, open-path (exposed directly to the environment) with a to measure the three most important – carbon dioxide, methane and water vapor – in the atmosphere. The biggest advantage of the combination is that it provides high-resolution mapping in both the vertical and horizontal directions near emissions sources – something that ground-based networks or satellite-based sensors cannot do. Additionally, the sensor on the robotic helicopter is easy to deploy, inexpensive to operate, can be programmed to fly a preset monitoring pattern using GPS coordinates, and can handle challenging situations such as measuring emissions from industrial plants where the plumes move sideways as well as up.

A first-time demonstration of a system with the potential to become a portable, low-power, low-cost, and long-lasting optical sensor for (O3) measurements will be presented by a team of engineers from the University of Rostock in Germany and Sensor Electronic Technology Inc. in South Carolina. The sensor uses light-emitting diodes (LEDs) to produce light in the deep ultraviolet range of the spectrum (wavelengths less than 300 nanometers) that allows the detection of small amounts of ozone – trace concentrations ranging anywhere from approximately 10 parts per billion to approximately 100 parts per million. The team showed in tests that this sensitivity compares favorably to conventional sensors that use less durable and more expensive mercury or electrochemical light sources. The team also discovered that coupling the deep ultraviolet LED to the detection equipment with fiber-optic cables produced a sturdy sensor that could be used in harsh environments, such as areas with strong electromagnetic fields, high temperatures, or strong vibrations.

Finally, engineer David Miller, also from Princeton University, will discuss his team's use of an open-path quantum cascade to create a portable sensor that can detect extremely small quantities of atmospheric ammonia (NH3) in harsh field environments. This molecule commonly forms unhealthy particulate matter, but measurements of this pollutant in the atmosphere are lacking. The Princeton sensor has performed well when deployed in harsh environments – everything from dusty deserts to jungle-like conditions to sub-freezing temperatures – providing an ability to measure concentrations of NH3 as small as 200 parts per trillion. Data from the high-sensitivity ammonia sensor will significantly improve air quality forecasts.

Explore further: Desktop device to make key gun part goes on sale in US

More information: www%2Ccleoconference.org/

add to favorites email to friend print save as pdf

Related Stories

Ozone detection

Jan 18, 2010

Researchers in Freiburg, Germany, have developed a highly-sensitive, miniaturized mobile ozone sensor which can be used not only in air, but also in water and in the vicinity of explosive gases.

Precise trace gas analysis, without the noise

May 24, 2010

Analyzing trace atmospheric gases can now be considerably more precise with the help of a device that delivers stable and reliable power to the lasers used in gas sensors.

New laser -- it's a gas, gas, gas... sensor

Dec 04, 2009

(PhysOrg.com) -- A new generation of optical sensors is enabling the development of robust, long-lasting, lighting-fast trace gas detectors for use in a wide range of industrial, security and domestic applications.

Recommended for you

Desktop device to make key gun part goes on sale in US

4 hours ago

The creator of the world's first 3D plastic handgun unveiled Wednesday his latest invention: a pre-programmed milling machine that enables anyone to easily make the core component of a semi-automatic rifle.

Minimally invasive surgery with hydraulic assistance

10 hours ago

Endoscopic surgery requires great manual dexterity on the part of the operating surgeon. Future endoscopic instruments equipped with a hydraulic control system will provide added support during minimally ...

Analyzing gold and steel – rapidly and precisely

12 hours ago

Optical emission spectrometers are widely used in the steel industry but the instruments currently employed are relatively large and bulky. A novel sensor makes it possible to significantly reduce their size ...

More efficient transformer materials

12 hours ago

Almost every electronic device contains a transformer. An important material used in their construction is electrical steel. Researchers have found a way to improve the performance of electrical steel and ...

Sensor network tracks down illegal bomb-making

13 hours ago

Terrorists can manufacture bombs with relative ease, few aids and easily accessible materials such as synthetic fertilizer. Not always do security forces succeed in preventing the attacks and tracking down ...

Miniature camera may reduce accidents

13 hours ago

Measuring only a few cubic millimeters, a new type of camera module might soon be integrated into future driver assistance systems to help car drivers facing critical situations. The little gadget can be ...

User comments : 0