Neutrons used to study a key protein in milk

April 24, 2012
Neutrons used to study a key protein in milk
Martha (her progeny is pictured here) was the subject of a scientific "cow-laboration."

Martha, a cow placidly grazing in a field in The Netherlands, became an important collaborator with researchers who successfully analyzed and characterized the internal protein structure and the composite particles of her milk using small-angle neutron scattering at DOE's Oak Ridge National Laboratory.

Casein micelles, a family of related phosphorus-containing proteins, make up 80 percent of the protein in . They are the building blocks of dairy products such as yogurt and cheese, supplying amino acids, calcium, and phosphorus to the body. More important, they are the principal vehicle for delivering calcium phosphate to rapidly growing newborns.

Researchers have long struggled with the challenge of unraveling the internal structure of this protein. An international collaboration used the's High Flux Isotope Reactor's (HFIR) general purpose small-angle neutron scattering instrument (GP-SANS) to study samples of milk from Martha. They compared the neutron scattering data with various theoretical models of casein structure that have been proposed in the literature. The results showed that one model prevails: The casein micelle proteins are composed of a protein matrix in which nanoclusters (about 300 per casein micelle) are dispersed.

Explore further: Biodegradable foam plastic substitute made from milk protein and clay

Related Stories

Cellulose breakdown

June 24, 2011

Ionic liquids have emerged as promising new solvents capable of disrupting the cellulose crystalline structure in a wide range of biomass feedstocks.

Recommended for you

Self-sealing syringe prevents blood loss in hemophilic mice

October 28, 2016

(—For people whose blood does not clot appropriately, such as those with hemophilia, diabetes, or cancer, getting an injection or blood draw with a hypodermic needle is not a trivial matter. Because the needle ...

A composite thread that varies in rigidity

October 27, 2016

EPFL scientists have developed a new type of composite thread that varies in stiffness depending on its temperature. Applications range from multifunctional robots to knitted casts, and even tunable medical devices.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.