Researchers have a natural sidekick that may resolve the antibiotic-resistant bacteria dilemma

April 25, 2012

Antibiotic-resistant bacteria continue to be a global concern with devastating repercussions, such as increased healthcare costs, potential spread of infections across continents, and prolonged illness.

However, researchers at Brigham and Women's Hospital (BWH) could change the playing field of man versus bacteria. Charles Serhan, PhD, director of the BWH Experimental Therapeutics and Reperfusion Injury Center, has identified pathways of naturally occurring molecules in our bodies that can enhance antibiotic performance.

The study will be electronically published on April 25, 2012 in Nature.

Mice infected with (E. coli) or (S. aureus) bacteria were given molecules called specialized pro-resolving mediators (SPMs) along with antibiotics. SPMs are naturally found in our bodies, and are responsible for mediating anti-inflammatory responses and resolve inflammation. An anti-inflammatory response is the body's attempt to protect itself from infectious agents and initiate the .

The researchers found that specific types of SPM molecules, called resolvins and protectins, were key in the anti-inflammatory response to limit by stimulating the body's to contain, kill and clear the bacteria.

Administered with antibiotics, resolvins and protectins heightened immune response by commanding white blood cells to attack and engulf the bacteria, thereby quickly reducing the amount of bacteria in the blood and tissues.

RvD5—a type of resolvin—in particular was also helpful in regulating fever caused by E.coli, as well as counter-regulating genes responsible for mounting excess inflammation associated with infections; hence, limiting the collateral damage to the body while fighting .

Serhan and colleagues are the first to demonstrate RvD5, as well as its actions against bacterial invasion. The BWH team, collaborating with Fredrik Bäckhed, PhD of the Sahlgrenska Center for Cardiovascular and Metabolic Research in Sweden, found that germ-free animals produce high levels of resolvins.

When Nan Chiang, PhD, BWH and Reperfusion Injury Center, and lead study author, added these natural mediators together with antibiotics, less antibiotics were needed. This demonstrated for the first time that stimulating resolution programs can limit negative consequences of infection.

"How the body responds to inflammation has been the subject of Dr. Serhan's work for more than 20 years, and his new study is important for understanding that sequence of events," said Richard Okita, PhD, National Institute of General Medical Sciences, National Institutes of Health which funded the research. "One of the particularly exciting findings is that SPMs can enhance the effectiveness of antibiotics, potentially lowering the amount needed to treat infections and reducing the risk of developing resistance."

According to the researchers, another advantage of SPMs is that, unlike anti-inflammatory drugs (e.g. aspirin, steroids, ibuprofen), SPMs do not cripple the body's normal .

"Anti-inflammatory agents are widely known to be immunosuppressive," said Serhan. "Now we have naturally occurring molecular pathways in our bodies that work like these agents and stimulate bacterial containment and resolution of infections, but do not come with the side effect of being immunosuppressive."

E. coli infections continue to be both a world- and nationwide concern. In the United States, E. coli infections account for approximately 270,000 cases per year. S. aureus is responsible for causing skin infections and a majority of hospital-acquired infections.

Explore further: Bacteria 'launch a shield' to resist attack

Related Stories

Bacteria 'launch a shield' to resist attack

November 2, 2009

Bacteria that cause chronic lung infections can communicate with each other to form a deadly shield against the body's natural defenses. Studying these interactions could lead to new ways of treating bacteria that are resistant ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.