Researchers have a natural sidekick that may resolve the antibiotic-resistant bacteria dilemma

Apr 25, 2012

Antibiotic-resistant bacteria continue to be a global concern with devastating repercussions, such as increased healthcare costs, potential spread of infections across continents, and prolonged illness.

However, researchers at Brigham and Women's Hospital (BWH) could change the playing field of man versus bacteria. Charles Serhan, PhD, director of the BWH Experimental Therapeutics and Reperfusion Injury Center, has identified pathways of naturally occurring molecules in our bodies that can enhance antibiotic performance.

The study will be electronically published on April 25, 2012 in Nature.

Mice infected with (E. coli) or (S. aureus) bacteria were given molecules called specialized pro-resolving mediators (SPMs) along with antibiotics. SPMs are naturally found in our bodies, and are responsible for mediating anti-inflammatory responses and resolve inflammation. An anti-inflammatory response is the body's attempt to protect itself from infectious agents and initiate the .

The researchers found that specific types of SPM molecules, called resolvins and protectins, were key in the anti-inflammatory response to limit by stimulating the body's to contain, kill and clear the bacteria.

Administered with antibiotics, resolvins and protectins heightened immune response by commanding white blood cells to attack and engulf the bacteria, thereby quickly reducing the amount of bacteria in the blood and tissues.

RvD5—a type of resolvin—in particular was also helpful in regulating fever caused by E.coli, as well as counter-regulating genes responsible for mounting excess inflammation associated with infections; hence, limiting the collateral damage to the body while fighting .

Serhan and colleagues are the first to demonstrate RvD5, as well as its actions against bacterial invasion. The BWH team, collaborating with Fredrik Bäckhed, PhD of the Sahlgrenska Center for Cardiovascular and Metabolic Research in Sweden, found that germ-free animals produce high levels of resolvins.

When Nan Chiang, PhD, BWH and Reperfusion Injury Center, and lead study author, added these natural mediators together with antibiotics, less antibiotics were needed. This demonstrated for the first time that stimulating resolution programs can limit negative consequences of infection.

"How the body responds to inflammation has been the subject of Dr. Serhan's work for more than 20 years, and his new study is important for understanding that sequence of events," said Richard Okita, PhD, National Institute of General Medical Sciences, National Institutes of Health which funded the research. "One of the particularly exciting findings is that SPMs can enhance the effectiveness of antibiotics, potentially lowering the amount needed to treat infections and reducing the risk of developing resistance."

According to the researchers, another advantage of SPMs is that, unlike anti-inflammatory drugs (e.g. aspirin, steroids, ibuprofen), SPMs do not cripple the body's normal .

"Anti-inflammatory agents are widely known to be immunosuppressive," said Serhan. "Now we have naturally occurring molecular pathways in our bodies that work like these agents and stimulate bacterial containment and resolution of infections, but do not come with the side effect of being immunosuppressive."

E. coli infections continue to be both a world- and nationwide concern. In the United States, E. coli infections account for approximately 270,000 cases per year. S. aureus is responsible for causing skin infections and a majority of hospital-acquired infections.

Explore further: Genomes of malaria-carrying mosquitoes sequenced

Related Stories

Bacteria 'launch a shield' to resist attack

Nov 02, 2009

Bacteria that cause chronic lung infections can communicate with each other to form a deadly shield against the body's natural defenses. Studying these interactions could lead to new ways of treating bacteria that are resistant ...

New strategy to combat cystitis

Jun 03, 2011

One in three women will be faced at least once in her life with cystitis, for some the start of a constantly recurring infection. Cystitis is caused by Escherichia coli bacteria which fasten on to the wall of the bladder by mea ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

10 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.