New design for nanoparticles that absorb low-energy light, emit high-energy light may find use in biological imaging

April 12, 2012
Upconverted emission from core-shell nanoparticles can take on different colors, by doping the shells with different activator elements. Copyright : 2011 NPG

The light that a luminescent particle emits is usually less energetic than the light that it absorbs. Some applications require the emitted light to be more energetic, but this so-called upconversion process has been observed in only a small handful of materials. Xiaogang Liu at the A*STAR Institute of Materials Research and Engineering and co-workers have now succeeded in expanding the list of upconversion materials, easing the path to new applications.

Traditional upconversion are distinguished by their evenly-spaced or ‘ladder-like’ energy levels which their internal electrons can take on. The even spacings allow an electron to be promoted up in energy many times consecutively, by absorbing many photons of the same color. When an electron that has been promoted to a high energy finally relaxes back to the lowest-energy state, it emits a photon which is more energetic than the photons that excited it to begin with.

doped with elements from the lanthanide group of the periodic table are capable of upconversion, and are useful for biological imaging because their high-energy emission can be clearly distinguished from background noise. However, only three elements from the lanthanide series are efficient at upconversion: erbium, thulium, and holmium. This list is so short because of the simultaneous requirements that an upconversion particle exhibit a ladder-like electronic energy structure, and also efficient emission.

Liu and colleagues solved this problem by using different lanthanides to perform different stages of the upconversion process. Sensitizer elements absorb incident , and transfer the absorbed energy to nearby accumulators, whose electrons rise to high energy levels. Then, the stored in accumulators transfers by hopping through many migrators, until an activator is reached. Finally, the activator releases a high-energy photon.

By assigning different elements to each of these four functions, the researchers were able to ease the requirements on any individual element. In addition, unwanted interactions among different elements were avoided by separating them spatially inside a single spherical nanoparticle that has sensitizers and accumulators in the core, activators in the shell and migrators in both the core and the shell.

This design allowed Liu and his team to observe a spectrum of colors from the upconverted emission of europium, terbium, dysprosium and samarium (see image). The same approach may also allow other elements to emit efficiently. “Our results may lead to advances in ultrasensitive biodetection,” says Liu, “and should inspire more researchers to work in this field.”

Explore further: Solving a subatomic shell game: Physicists decode hidden properties of the rare Earths

More information: Wang, F. et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nature Materials 10, 968–973 (2011). www.nature.com/nmat/journal/v10/n12/full/nmat3149.html

Related Stories

Proposed gamma-ray laser could emit 'nuclear light'

May 2, 2011

(PhysOrg.com) -- Building a nuclear gamma-ray laser has been a challenge for scientists for a long time, but a new proposal for such a device has overcome some of the most difficult problems. In the new study, Eugene Tkalya ...

Learning from plants: visible light energy harvesting

June 23, 2011

How do they do it? Plants make use of only the energy of sunlight for their requirements. Many researchers are trying to mimic the process to harness the vast energy of the sun. In the article published recently in Angew. ...

Taking a closer look at molecular electronics

March 9, 2012

Molecules and polymers have unique electronic and optical properties suitable for use in electronic devices. These properties, however, are complex and not well understood. Charge transport, for example, is affected by molecule ...

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

OldBlackCrow
not rated yet Apr 13, 2012
Would this could mean then, in theory, one could build a "solar" panel that would work at night under a full moon? Probably not very economically efficient... But the concept is sound, yes?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.