Using math to feed the world

Apr 17, 2012

In the race to breed better crops to feed the increasing world population, scientists at The University of Nottingham are using maths to find out how a vital plant hormone affects growth.

Gibberellin is a hormone which plays a key part in development throughout the plant, from the root to the flowers and leaves. The hormone works within a complex network of molecules inside the plant, translating signals from the environment into responses in the plant so it can adapt and survive.

Many of the crop varieties developed during the global agricultural 'green revolution' of the 1960s were found to have in this important pathway. Now a team of scientists has applied to understand how this 'green revolution' hormone works to control plant growth. They have then been able to show how these interactions result in changes in hormone levels that could be key to breeding improved in the future.

Leading the research at Nottingham, Dr Markus Owen, Reader in Applied Mathematics, said: "We know that plants with low levels of gibberellin show drastically reduced growth, whilst adding gibberellin can significantly increase growth rates. Mathematical modelling has proved to be a powerful tool to help us understand how gibberellin works. Ultimately, this should help plant scientists to develop crops with improved growth, and hence to address problems of global food security."

A second piece of research in this area has looked at the gibberellin distribution along a growing root, a factor which also affects growth and development. A team led by Professor of Theoretical Mechanics at The University of Nottingham, John King, has used multiscale to probe how the gibberellin signalling network controls root growth. Work by researcher Leah Band revealed that dilution of gibberellin in rapidly expanding cells can explain why growth finally ceases.

The study led by Dr Owen highlights the importance of interactions between several key feedback loops within the gibberellin signalling network. Professor King's team combined that signalling network with a model for the elongation of a root, to predict how DELLA proteins (key components within the gibberellin signalling network which normally suppress growth), increase along the root, which explains experimental observations of growth rates.

Both studies have just been published in the leading academic journal Proceedings of the National Academy of Sciences (PNAS).

Explore further: A numbers game: Math helps to predict how the body fights disease

add to favorites email to friend print save as pdf

Related Stories

Hormone clue to root growth

Jul 06, 2009

(PhysOrg.com) -- Plant roots provide the crops we eat with water, nutrients and anchorage. Understanding how roots grow and how hormones control that growth is crucial to improving crop yields, which will be necessary to ...

How plants learned to respond to changing environments

Jul 12, 2007

A team of John Innes centre scientists lead by Professor Nick Harberd have discovered how plants evolved the ability to adapt to changes in climate and environment. Plants adapt their growth, including key steps in their ...

Improving crops from the roots up

Jan 24, 2012

Research involving scientists at The University of Nottingham has taken us a step closer to breeding hardier crops that can better adapt to different environmental conditions and fight off attack from parasites.

Why do plant roots grow down and not up?

Mar 08, 2012

(PhysOrg.com) -- It is essential for roots to grow down so they can explore the soil and maximise their water uptake. But how they know that is a question that has fascinated scientists since Darwin. Now scientists ...

New tool puts plant hormone under surveillance

Jan 16, 2012

(PhysOrg.com) -- Charles Darwin was the first to speculate that plants contain hormones. His pioneering research led to the identification of the very first and key plant growth hormone — auxin — ...

Recommended for you

Pop music heritage contributes to the formation of identity

18 hours ago

The musical rebels of the past are today's museum pieces. Pop music is increasingly penetrating heritage institutions such as museums and archives. That is apparent from the PhD research of Arno van der Hoeven. On Thursday ...

Helping older employees stay in their jobs

19 hours ago

Factors that can hinder older employees from continuing to work include workload, a poor memory and the pensionable age-effect. The Job-Exposure Matrix is a newly developed instrument that provides an easy way to chart the ...

Explainer: What is a small private online course?

20 hours ago

If you have studied an online course at a university over the past couple of decades, you've probably already experienced a SPOC, or Small Private Online Course. SPOC is a new term for an old concept, which appears to be frustrating members of the distance edu ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.