New research suggests initial mass function for galaxies not universal

April 26, 2012 by Bob Yirka report
Differentiating between the stellar and dark matter with integral-field stellar kinematics. Image: Nature, doi:10.1038/nature10972

( -- Over the past several years there has been debate in the astrophysics community regarding the distribution of stars in galaxies, specifically their mass range. Astronomers use an initial mass function (IMF) to calculate the numbers of different kinds of stars in any given galaxy, but what’s not been clear is whether the IMF applies to all galaxies of all types. Now, a large international group of astronomers has found after studying data form 260 galaxies that the distribution of stars in early galaxies appears to be different from the distribution of stars in galaxies that formed later in time, casting doubt on the dependability of the IMF. They report their findings in their paper published in the journal Nature.

Because some stars are too small to be studied individually, astronomers have come up with a way to measure the number of stars of different types in a galaxy by measuring the spectrum for the entire galaxy and then applying an initial mass function to it. Doing so gives a good approximation of the number of stars in any given mass range. The problem up till now however, is that it’s not been clear if the same IMF applies to all types of galaxies (spiral, elliptical or irregular). To find out, the researchers turned to the ATLAS3D project (a multi-wavelength survey of 260 so-called early type, i.e. elliptical galaxies) to help them generate a two dimensional distribution of stars in galaxies along with their statistical spectrums.

Using the data they’d extracted, the team built several models (varying the composition) to generate galaxy structures. In so doing, they found that the ratio of mass to light from just the in their models (minus gas and dark matter) for some elliptical low mass galaxies did indeed look like spiral galaxies. But they also found some that did not, which means that the IMF is not universal. They also found generally the same results no matter which dark matter composition they used, which means of course that the results obtained were independent of mass.

The team says this all means that a birthing star is influenced by the galaxy in which it is born. But that creates another problem, because prior research has shown that at least some large galaxies were created by the merging of smaller . But since the mass of the star doesn’t change over time, how could its current state reflect the galaxy in which it was born if it resides in a merged galaxy? The researchers don’t know, but suggest a serious rethinking of the IMF will have to be done to see if it actually holds any real value.

Explore further: Survey Reveals Building Block Process For Biggest Galaxies

More information: Systematic variation of the stellar initial mass function in early-type galaxies, Nature 484, 485–488 (26 April 2012) doi:10.1038/nature10972

Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination1, no consensus has emerged on whether it is universal among different types of galaxies2. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal3, 4, 5, 6, 7, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way8. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS3D sample9 of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy’s IMF depends intimately on the galaxy's formation history.

Related Stories

Survey Reveals Building Block Process For Biggest Galaxies

April 12, 2006

A new study of the universe's most massive galaxy clusters shows how mergers play a critical role in their evolution. Astronomers used the twin Gemini Observatory instruments in Hawaii and Chile, and the Hubble Space Telescope ...

Antennae Galaxies

May 19, 2008

This image of the Antennae galaxies is the sharpest yet of this merging pair of galaxies. During the course of the collision, billions of stars will be formed. The brightest and most compact of these star birth regions are ...

An abundance of small stars

December 10, 2010

( -- Stars form from giant clouds of gas and dust in space, as the matter in these clouds comes together under the influence of gravity.

3D galaxies -- coming straight on for you

June 29, 2011

As we've recently learned, the ATLAS3D project was able to study 260 individual galaxies and do some very amazing things. By imaging in both red and blue shift, astronomers were able to take stellar measurements and give ...

Mapping dark matter from galactic ripples

January 9, 2012

( -- Sukanya Chakrabarti, Ph.D., an assistant professor of physics for the Charles E. Schmidt College of Science at Florida Atlantic University, has developed a way to discover and map dark matter in galaxies. ...

A spiral galaxy in Hydra

April 9, 2012

( -- This image from the NASA/ESA Hubble Space Telescope shows NGC 4980, a spiral galaxy in the southern constellation of Hydra. The shape of NGC 4980 appears slightly deformed, something which is often a sign of ...

Recommended for you

Earth might have hairy dark matter

November 23, 2015

The solar system might be a lot hairier than we thought. A new study publishing this week in the Astrophysical Journal by Gary Prézeau of NASA's Jet Propulsion Laboratory, Pasadena, California, proposes the existence of ...

The hottest white dwarf in the Galaxy

November 25, 2015

Astronomers at the Universities of Tübingen and Potsdam have identified the hottest white dwarf ever discovered in our Galaxy. With a temperature of 250,000 degrees Celsius, this dying star at the outskirts of the Milky ...

Scientists detect stellar streams around Magellanic Clouds

November 23, 2015

(—Astronomers from the University of Cambridge, U.K., have detected a number of narrow streams and diffuse debris clouds around two nearby irregular dwarf galaxies called the Magellanic Clouds. The research also ...


Adjust slider to filter visible comments by rank

Display comments: newest first

0.1 / 5 (23) Apr 26, 2012
And thus the Dark Matter can be removed from the equation.
1 / 5 (5) Apr 26, 2012
In part, because, it is just assumed that the mass of a star does not change over time. In LaViolettes continuous creation model, stars grow from within over time. Nucleation of new matter is greatest at their cores, where the mass density is greatest. The more massive the star, the faster it grows. The extreme case is active galactic nuclei, where massive outflows of gas have been observed.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.