Measuring magnetic fields

April 9, 2012
An optical image of the Pelican Nebula, a complex region forming young stars. New observations of a similar star forming region have determined the strength of its magnetic field. Credit: Martin Pugh

( -- Polarized light is a familiar phenomenon, as people who prefer polarized sunglasses can testify. The electric field in a beam of light can vibrate either left-right or up-down, and the scattering or reflection of light can result in the preferential absorption of one or the other of these two "polarizations." The majority of sunlight on Earth, for example, is preferentially polarized in one direction due to scattering in the atmosphere; that's what makes polarized sunglasses so effective.

Electromagnetic radiation from astrophysical sources can also be polarized. It often occurs because of selective scattering from elongated (possibly even needle-shaped) . When most of the grains in a volume have been oriented in the same direction by the region's magnetic field, the degree of polarization of will be significant. Astronomers are extremely interested in magnetic fields, which play a major - perhaps even a dominant - role in controlling the shapes and motions of clouds. Unfortunately, magnetic fields are very difficult to measure directly. Polarization observations, it turns out, offer a unique way to probe the magnetic fields.

SAO astronomer Paul Ho and two colleagues used the (SMA) to measure the polarization of millimeter wavelength light from a dusty region of particularly active star formation called W51e2, located about twenty two thousand light-years away from us. The SMA measures two properties of the scattered light: the angle of the vibration with respect to the cloud's contours, and the amount of polarization compared to the unpolarized light.

The scientists used this information, together with known features of the region, to develop a new and potentially wide-ranging scheme to determine magnetic field strengths in . With some general assumptions, they show that the field strength can derived from the angle the polarization makes with the radiation's intensity contours. In the case of W51e2, they conclude that the field's strength is relatively strong (about 65 times weaker that the Earth's magnetic field; they suspected as much - that's why they chose this object in the first place).

This new technique, if corroborated by other research, can be expanded and applied to many other objects and potentially revolutionize our understanding of this key physical component of the interstellar medium.

Explore further: A new way to measure Earth's magnetosphere

Related Stories

A new way to measure Earth's magnetosphere

January 4, 2012

US researchers have demonstrated the potential use of a new way to measure properties of Earth's magnetosphere, the magnetic bubble that surrounds the planet.

Magnetic fields set the stage for the birth of new stars

November 16, 2011

( -- Astronomers at the Max Planck Institute for Astronomy have, for the first time, measured the alignment of magnetic fields in gigantic clouds of gas and dust in a distant galaxy. Their results suggest that ...

Magnetic fields in interstellar clouds

March 25, 2011

( -- Magnetic fields play an important role in the formation and evolution of stars, as they stretch around a hot medium like a rubber band and help to determine the flow of material onto or away from the star.

SDO helps measure magnetic fields on the sun's surface

January 20, 2012

( -- Science nuggets are a collection of early science results, new research techniques, and instrument updates that further our attempt to understand the sun and the dynamic space weather system that surrounds ...

Physicists rotate beams of light

April 5, 2011

Controlling the rotation of light – this amazing feat was accomplished at the Vienna University of Technology (TU Vienna), by means of a ultra thin semiconductor. This can be used to create a transistor that works with ...

Recommended for you

Gaia spies two temporarily magnified stars

October 28, 2016

While scanning the sky to measure the position of over one billion stars in our Galaxy, ESA's Gaia satellite has detected two rare instances of stars whose light was temporarily boosted by other celestial objects passing ...

How planets like Jupiter form

October 28, 2016

Young giant planets are born from gas and dust. Researchers of ETH Zürich and the Universities of Zürich and Bern simulated different scenarios relying on the computing power of the Swiss National Supercomputing Centre ...

More than 15,000 near-Earth objects and counting

October 28, 2016

The international effort to find, confirm and catalogue the multitude of asteroids that pose a threat to our planet has reached a milestone: 15 000 discovered – with many more to go.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.