IBEX and TWINS join forces to observe a solar storm

Apr 12, 2012 by Karen C. Fox
The highly elliptical orbit of TWINS offers a good view of the ring current -- a hula hoop of charged particles that encircles Earth. Credit: J. Goldstein/SWRI

(Phys.org) -- On April 5, 2010, the sun spewed a two million-mile-per-hour stream of charged particles toward the invisible magnetic fields surrounding Earth, known as the magnetosphere. As the particles interacted with the magnetic fields, the incoming stream of energy caused stormy conditions near Earth. Some scientists believe that it was this solar storm that interfered with commands to a communications satellite, Galaxy-15, which subsequently foundered and drifted, taking almost a year to return to its station.

To better understand how to protect satellites from intense bursts of , scientists study the full chain of from first eruptions on the sun to how the magnetic fields around compress and change shape in response. During the April 5 storm, two Heliophysics System missions – the Interstellar Boundary Explorer (IBEX) and two spacecraft called the Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) – were perfectly positioned to view the storm from complementary viewpoints.

The three sets of instruments have been used together to paint a more complete picture of what happens during a , from initial impact of solar energy through to the particles that ultimately slide down into Earth's atmosphere near the poles. These results were published online on March 27, 2012 in the Journal of Geophysical Research.

"One spacecraft can only take recurring measurements along its own flight path," says Natalia Buzulukova, one of the authors on this paper and a geospace scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. and at the University of Maryland in College Park. "But this is not always enough to understand the whole event. With several spacecraft at once we have a unique opportunity to observe more of the simultaneously."

The two TWINS spacecraft and IBEX orbit Earth in very different paths. TWINS travels along a highly elliptical orbit around Earth through the magnetosphere. IBEX, too, circles Earth, but generally lies outside the magnetosphere allowing it to map the very edges of the solar system. Together, they offer glimpses from the inside and outside of the magnetosphere, including the side that faces the sun, the side that extends long away from the sun – the magnetotail -- and an electric current that sometimes appears around Earth like a giant hula hoop called the ring current.

"This imaging gives us a better global picture of the evolution of the magnetosphere — especially of the processes by which the sun injects energy into the magnetosphere — than has ever been available before," says David McComas, a space scientist at Southwest Research Institute in San Antonio, Texas, who is first author on this paper and also the principal investigator for the IBEX and TWINS missions.

IBEX and TWINS both have instruments to study what's called energetic neutral atoms or ENAs. These fast moving particles are produced during particle collisions between charged and neutral particles. Crucially, they move in a straight line from their point of origin, unmolested by the magnetic fields that would constrain charged particles in their travels. Thus they can provide an "image" to decode and map out the structure of a far away charged particle system, such as occurs in the magnetosphere and ring current.

The ENA images from IBEX were taken from a distance of around 180,000 miles above the magnetosphere. They show that the magnetosphere immediately compressed under the impact of the charged particles from the solar wind. Minutes later, one of the TWINS spacecraft observed changes in the inner magnetosphere from a much-closer 28,000 miles: the ring current began to trap incoming charged particles. About 15 minutes after impact, these trapped particles gyrated down lines into Earth's atmosphere, a process known as "precipitation." The time delay between the onset of trapped particles and losing them to the atmosphere points to a fairly slow set of internal processes carrying the region from storm impact through compression to precipitation.

"The solar storm directly causes the ring current activity, but the other effects, including precipitating down toward the atmosphere, are triggered by something called a substorm, a process that releases energy form the magnetotail," says Buzulukova. "These two triggers have different physics and different manifestations. This analysis opens the door to understanding how these different effects are connected."

The paper also paves the way to more sophisticated modeling techniques of the entire magnetosphere. To produce the new images, the team developed a series of techniques to process the imaging data, including improved procedures for differential background subtraction, "statistical smoothing" of images, and comprehensive modeling of the ring current.

"Understanding how solar events develop and impact satellites is like understanding the processes that cause extreme weather events on Earth to develop and destroy homes and businesses," says McComas. "Engineers use weather data to know where and how they need to strengthen buildings against various types of weather threats. The more we know about the processes occurring in space, the better engineers can design satellites to protect them from space weather hazards, which is increasingly important in our highly technological world."

Explore further: Dawn spacecraft captures best-ever view of dwarf planet

Related Stories

Catching space weather in the act

Feb 17, 2011

Close to the globe, Earth's magnetic field wraps around the planet like a gigantic spherical web, curving in to touch Earth at the poles. But this isn't true as you get further from the planet. As you move ...

Storms from the sun

Mar 09, 2012

(PhysOrg.com) -- Space weather starts at the sun. It begins with an eruption such as a huge burst of light and radiation called a solar flare or a gigantic cloud of solar material called a coronal mass ejection ...

Geomagnetic storm subsiding

Apr 14, 2011

A geomagnetic storm that sparked auroras around the Arctic Circle and sent Northern Lights spilling over the Canadian border into the United States on April 12, 2011 is subsiding. NOAA forecasters estimate ...

Recommended for you

Dawn spacecraft captures best-ever view of dwarf planet

7 hours ago

NASA's Dawn spacecraft has returned the sharpest images ever seen of the dwarf planet Ceres. The images were taken 147,000 miles (237,000 kilometers) from Ceres on Jan. 25, and represent a new milestone for ...

Image: Striking lightning from space

11 hours ago

Lightning illuminates the area it strikes on Earth but the flash can be seen from space, too. This image was taken from 400 km above Earth in 2012 by an astronaut on the International Space Station travelling ...

Are asteroids the future of planetary science?

11 hours ago

I don't think I ever learned one of those little rhymes – My Very Educated Mother Just Served Us Nine Pizzas – to memorize the order of the planets, but if I had, it would've painted for me a minimalist ...

Earth's moon may not be critical to life

13 hours ago

The Moon has long been viewed as a crucial component in creating an environment suitable for the evolution of complex life on Earth, but a number of scientific results in recent years have shown that perhaps our ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.