High-tech tactic may expose stealthy salmonella

April 10, 2012 By Marsha Wood
Transmission electron microscope image of biopolymer spheres coated (encapsulated) with silver nanoparticles, which might make an ideal surface (substrate) for SERS detection of foodborne pathogens in food and beverage samples. Credit: Jaya Sundaram

Even the smallest quantity of Salmonella may, in the future, be easily detected with a technology known as SERS, short for "surface-enhanced Raman scattering." U.S. Department of Agriculture (USDA) scientist Bosoon Park at Athens, Ga., is leading exploratory studies of this analytical technique's potential for quick, easy and reliable detection of Salmonella and other foodborne pathogens.

According to the U.S. , Salmonella causes more than one million cases of illness in the United States every year.

If SERS proves successful for cornering Salmonella, the technique might be used at public health laboratories around the nation to rapidly identify this or other pathogens responsible for outbreaks of foodborne illness, according to Park, an agricultural engineer with USDA's Agricultural Research Service (ARS). What's more, tomorrow's foodmakers might use SERS at their in-house quality control labs.

ARS is USDA's chief intramural scientific research agency. Park's research supports the USDA priority of enhancing food safety.

In a SERS analysis, a specimen is placed on a surface, such as a stainless steel plate, that has been "enhanced" or changed from smooth to rough. For some of their research, Park's team enhanced the surface of stainless steel plates by coating them with , made up of a biopolymer encapsulated with nanoparticles of silver.

, and colloidal metals such as silver, can enhance the scattering of light that occurs when a specimen, placed on this "nanosubstrate," is scanned with the Raman spectrometer's laser beam.

The that comes back to the forms a distinct spectral pattern known as a Raman spectral signature, or Raman scattered signal. Researchers expect to prove the concept that all molecules, such as those that make up Salmonella, have their own unique Raman spectral signature.

The idea of using a substrate of for Raman spectroscopy is not new. But in SERS studies to detect foodborne pathogens, the use of a surfac—enhanced with biopolymers coated with silver nanoparticles—is apparently novel.

In work with comparatively large concentrations of two different kinds, or serotypes, of enterica—Enteritidis and Typhimurium—Park's tests showed, apparently for the first time, that SERS can differentiate these two serotypes. With further research, SERS may prove superior for finding very small quantities of bacteria in a complex, real-world background, such as a food or beverage sample, Park notes.

He collaborated in the research with Arthur Hinton, Jr., Kurt C. Lawrence, Jaya Sundaram, William R. Windham, and Seung Chul Yoon, all with ARS at the agency's Richard B. Russell Research Center in Athens; Yao-Wen Huang and Yiping Zhao of the University of Georgia-Athens; Yongkuk Kwon of South Korea's Animal, Plant, and Fisheries Quarantine and Inspection Agency; and others.

Explore further: ORNL nanoprobe creates world of new possibilities

More information: Read more about the research in the April 2012 issue of Agricultural Research magazine.

Related Stories

ORNL nanoprobe creates world of new possibilities

July 15, 2004

A technology with proven environmental, forensics and medical applications has received a shot in the arm because of an invention by researchers at the Department of Energy's Oak Ridge National Laboratory. ORNL's nanoprobe, ...

Securing the nation with fingerprinting materials

November 9, 2010

Lawrence Livermore National Laboratory researchers may have found a way to improve Raman spectroscopy as a tool for identifying substances in extremely low concentrations. Potential applications for Raman spectroscopy include ...

Biosensors: Sweet and simple

April 14, 2011

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and versatile analytical tool that is widely used in biosensing applications. In conventional Raman spectroscopy, molecules are detected by their characteristic ...

Recommended for you

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(Phys.org)—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Which came first—the sponge or the comb jelly?

December 1, 2015

Bristol study reaffirms classical view of early animal evolution. Whether sponges or comb jellies (also known as sea gooseberries) represent the oldest extant animal phylum is of crucial importance to our understanding of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.