High-tech tactic may expose stealthy salmonella

Apr 10, 2012 By Marsha Wood
Transmission electron microscope image of biopolymer spheres coated (encapsulated) with silver nanoparticles, which might make an ideal surface (substrate) for SERS detection of foodborne pathogens in food and beverage samples. Credit: Jaya Sundaram

Even the smallest quantity of Salmonella may, in the future, be easily detected with a technology known as SERS, short for "surface-enhanced Raman scattering." U.S. Department of Agriculture (USDA) scientist Bosoon Park at Athens, Ga., is leading exploratory studies of this analytical technique's potential for quick, easy and reliable detection of Salmonella and other foodborne pathogens.

According to the U.S. , Salmonella causes more than one million cases of illness in the United States every year.

If SERS proves successful for cornering Salmonella, the technique might be used at public health laboratories around the nation to rapidly identify this or other pathogens responsible for outbreaks of foodborne illness, according to Park, an agricultural engineer with USDA's Agricultural Research Service (ARS). What's more, tomorrow's foodmakers might use SERS at their in-house quality control labs.

ARS is USDA's chief intramural scientific research agency. Park's research supports the USDA priority of enhancing food safety.

In a SERS analysis, a specimen is placed on a surface, such as a stainless steel plate, that has been "enhanced" or changed from smooth to rough. For some of their research, Park's team enhanced the surface of stainless steel plates by coating them with , made up of a biopolymer encapsulated with nanoparticles of silver.

, and colloidal metals such as silver, can enhance the scattering of light that occurs when a specimen, placed on this "nanosubstrate," is scanned with the Raman spectrometer's laser beam.

The that comes back to the forms a distinct spectral pattern known as a Raman spectral signature, or Raman scattered signal. Researchers expect to prove the concept that all molecules, such as those that make up Salmonella, have their own unique Raman spectral signature.

The idea of using a substrate of for Raman spectroscopy is not new. But in SERS studies to detect foodborne pathogens, the use of a surfac—enhanced with biopolymers coated with silver nanoparticles—is apparently novel.

In work with comparatively large concentrations of two different kinds, or serotypes, of enterica—Enteritidis and Typhimurium—Park's tests showed, apparently for the first time, that SERS can differentiate these two serotypes. With further research, SERS may prove superior for finding very small quantities of bacteria in a complex, real-world background, such as a food or beverage sample, Park notes.

He collaborated in the research with Arthur Hinton, Jr., Kurt C. Lawrence, Jaya Sundaram, William R. Windham, and Seung Chul Yoon, all with ARS at the agency's Richard B. Russell Research Center in Athens; Yao-Wen Huang and Yiping Zhao of the University of Georgia-Athens; Yongkuk Kwon of South Korea's Animal, Plant, and Fisheries Quarantine and Inspection Agency; and others.

Explore further: Two-armed control of ATR, a master regulator of the DNA damage checkpoint

More information: Read more about the research in the April 2012 issue of Agricultural Research magazine.

Provided by USDA Agricultural Research Service

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Biosensors: Sweet and simple

Apr 14, 2011

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and versatile analytical tool that is widely used in biosensing applications. In conventional Raman spectroscopy, molecules are detected by ...

ORNL nanoprobe creates world of new possibilities

Jul 15, 2004

A technology with proven environmental, forensics and medical applications has received a shot in the arm because of an invention by researchers at the Department of Energy's Oak Ridge National Laboratory. ORNL's nanoprobe, which ...

Securing the nation with fingerprinting materials

Nov 09, 2010

Lawrence Livermore National Laboratory researchers may have found a way to improve Raman spectroscopy as a tool for identifying substances in extremely low concentrations. Potential applications for Raman ...

Recommended for you

Japanese scientist resigns over stem cell scandal

Dec 19, 2014

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.