Handover of Japan-built radar to NASA

April 4, 2012 By Ellen Gray
Left to right: Peter Hildebrand (NASA), Masahiro Kojima (JAXA) and Takeshi Miura (JAXA) in the clean room with the DPR. Credit: NASA Goddard/Pat Izzo

On March 30, the Japan Aerospace Exploration Agency (JAXA) officially handed off a new satellite instrument to NASA at Goddard Space Flight Center, Greenbelt, Md. The Dual-frequency Precipitation Radar (DPR) was designed and built by JAXA and Japan's National Institute of Information and Communications Technology (NICT).

The DPR is one of two instruments that will fly aboard NASA's Core Observatory for the Global (GPM) mission scheduled for launch from Tanegashima Space Center, Japan on February 2014.

The Japanese engineering team that built the DPR accompanied the instrument to Goddard. They spent ten days putting the instrument through a post-travel check-up. The tests went well and according to schedule, said Masahiro Kojima, DPR Project Manager at JAXA.

The GPM mission was initiated by NASA and and is designed to unify precipitation measurements made by the GPM Core satellite along with a constellation of international partner satellites to achieve global coverage of rain and snow every three hours.

NASA provided GPM's other instrument, the GPM (GMI), which was delivered to Goddard in late February and has been integrated onto the GPM Core Observatory.

"We are at a very exciting phase of the project; having both instruments GMI and DPR delivered to Goddard," said GPM Project Manager, Art Azarbarzin.

The DPR will be integrated onto the GPM spacecraft in the coming months.

The will provide insights into a storm's physical structures. Its data will expand our knowledge of precipitation science, the Earth's water cycle, and the supply of fresh water around the world. It also will aid forecasts of hurricanes, floods and other .

The instrument is the first space-borne radar to use two bands in the microwave range of frequencies, Ku and Ka, to study precipitation. It obtains three-dimensional information about precipitation particles by measuring reflected energy from them at different heights within the clouds. The 'dual' in the radar's name refers to the way the two microwave bands of the instrument complement each other, allowing the radar to provide new information about the size distribution of raindrops and snowflakes as they fall.

Explore further: NASA Global Precipitation Measurement Mission Passes Major Review

More information: For more information about the GPM mission, please visit: www.nasa.gov/gpm

Related Stories

NASA cold weather airborne campaign to measure falling snow

January 13, 2012

Beginning Jan. 17, NASA will fly an airborne science laboratory above Canadian snowstorms to tackle a difficult challenge facing the upcoming Global Precipitation Measurement (GPM) satellite mission -- measuring snowfall ...

JPL radar treks to great white north to study snow

January 18, 2012

(PhysOrg.com) -- Beginning Jan. 17, NASA will fly an airborne science laboratory, including a unique airborne radar built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., above Canadian snowstorms to tackle a difficult ...

Spaceborne precipitation radar ships from Japan to U.S.

February 9, 2012

(PhysOrg.com) -- Japanese scientists and engineers have completed construction on a new instrument designed to take 3-D measurements of the shapes, sizes and other physical characteristics of both raindrops and snowflakes. ...

Recommended for you

Distant planet's interior chemistry may differ from our own

September 1, 2015

As astronomers continue finding new rocky planets around distant stars, high-pressure physicists are considering what the interiors of those planets might be like and how their chemistry could differ from that found on Earth. ...

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.