Graphene lenses: 2-D electron shepherds

Apr 18, 2012

Researchers discover that a deformed layer of graphene can focus electrons similar to the way an optical lens bends light.

Graphene, the one-atom-thick "wonder material" made of carbon, has another potential use in the world of high-speed electronics – as a tool that can focus a stream of electrons similar to the way an focuses light. A new prototype reveals that a layer of graphene, when strained through stretching, can act as a two-dimensional lens for electrons. The research, which is published in the American Institute of Physics' (AIP) journal Applied Physics Letters, was produced by an international group of researchers from the Karlsruhe Institute of Technology in Germany and the French National Center for Scientific Research (CRNS).

Graphene is an excellent conductor: electrons flow freely across its surface in straight lines. According to a previously proposed theory, highly strained graphene impedes the flow of electrons, slowing them down and altering their trajectory. Scientists believed this effect could be used to focus electrons to a fine point – similar to the way an optical lens creates areas of refraction, or bending, to shepherd light to a point.

To create the prototype lens, the team of French and German researchers built a "deformed graphene carpet" that smoothly covers a series of hexagonal nano-holes in a silicon-carbide wafer. Areas of the graphene were strained as they adopted the shape of the holes in the wafer. The researchers found that they could control the focal length of a graphene lens by changing its geometry. Practical applications of this work include uses in high-speed electronics, where strained could act as a transport medium for information exchange between different parts of a circuit. Unlike traditional information exchange, in which electrons flow through cables whose paths cannot cross without a short, the new method would allow an unprecedented freedom of movement, similar to that of light in a vacuum.

Explore further: 'Dressed' laser aimed at clouds may be key to inducing rain, lightning

More information: "A graphene electron lens" by Lukas Gerhard et al. is published in Applied Physics Letters. dx.doi.org/10.1063/1.3701594

Related Stories

The secrets of tunneling through energy barriers

Nov 07, 2011

Electrons moving in graphene behave in an unusual way, as demonstrated by 2010 Nobel Prize laureates for physics Andre Geim and Konstantin Novoselov, who performed transport experiments on this one-carbon-atom-thick material. ...

Two graphene layers may be better than one

Apr 27, 2011

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology have shown that the electronic properties of two layers of graphene vary on the nanometer scale. The surprising new results ...

Flaky graphene makes reliable chemical sensors

Jan 17, 2012

Scientists from the University of Illinois at Urbana-Champaign and the company Dioxide Materials have demonstrated that randomly stacked graphene flakes can make an effective chemical sensor.

Recommended for you

Precise control of optical frequency on a chip

19 hours ago

In the 1940s, researchers learned how to precisely control the frequency of microwaves, which enabled radio transmission to transition from relatively low-fidelity amplitude modulation (AM) to high-fidelity ...

User comments : 0

More news stories

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

FCC to propose pay-for-priority Internet standards

The Federal Communications Commission is set to propose new open Internet rules that would allow content companies to pay for faster delivery over the so-called "last mile" connection to people's homes.

SK Hynix posts Q1 surge in net profit

South Korea's SK Hynix Inc said Thursday its first-quarter net profit surged nearly 350 percent from the previous year on a spike in sales of PC memory chips.