Genetic markers for tracking species

Apr 25, 2012

At the supermarket checkout, hardly anybody enters prices manually anymore. Using scanners that can read the barcodes is much faster. Biologists now want to use a similar procedure for identifying domestic animal and plant species more efficiently. German Barcode of Life is the name of an initiative on which zoologists and botanists are collaborating in Germany. Botanists from the University of Bonn have taken the lead for the flora.

"In the DNA of living beings, we have identified sections as 'DNA barcodes' that, while being almost identical within a certain , differ among the various species," explained Prof. Dr. Dietmar Quandt from the Nees Institute for Biodiversity of Plants at the University of Bonn. "Based on these markers, we can then identify species unambiguously and relatively fast." The result of this analysis resembles a barcode at the supermarket; only that it does not come in black and white, but in four colors, with each one corresponding to one of the four letters of the .

What counts is only (the genetic) make-up

In classical biological taxonomy, animals and plants are identified by their external characteristics. "It is in species of a genus that resemble each other very closely, such as sedges, that definite identification can be a very long process," reported Prof. Quandt, Speaker for the botanical project within the GBOL Initiative. "In addition, we have to rely on competent experts here, who unfortunately are a dying breed nationally." Fully automated sequencing of DNA, however, allows identifying plants much faster. "Besides, we do not need flowering and complete plants," added Stefanie Winter, one of Prof. Quandt's doctoral candidates. "A tiny fragment, e.g., from a leaf, is sufficient for identifying the species based on its ."

More than 5,000 plant species to be collected

In the GBOL Project, the scientists first want to create a library of sample material for classifying the species. In a concerted initiative with the natural history museums, nature conservancy organizations and proven experts, specific plant samples will be catalogued throughout Germany. "For this purpose, the natural history collections have proven to be invaluable treasure troves since they are providing us with some of their priceless samples," said Prof. Quandt. The challenge is enormous: There are about 4,000 flowering plants in Germany, as well as 1,300 species of mosses and ferns.

Project to Improve Monitoring of the Environment

Capturing our flora by means of DNA is intended to make monitoring environmental effects easier: How do individual species respond to climate change? Are certain species being replaced by living organisms that have been imported from other countries? Which species are threatened with extinction? "Given the many threats for life on Earth, environmental monitoring is becoming more important," said Prof. Quandt. "The DNA barcodes can simplify and accelerate such studies considerably."

Explore further: Being sheepish about climate adaptation

More information: Information on the GBOL Project online at: www.bolgermany.de/

add to favorites email to friend print save as pdf

Related Stories

DNA 'barcode' identified for plants

Feb 05, 2008

A 'barcode' gene that can be used to distinguish between the majority of plant species on Earth has been identified by scientists who publish their findings in the Proceedings of the National Academy of Sciences journal today. ...

Researchers push for standard DNA barcodes for plants

Jul 27, 2009

Two University of British Columbia researchers are part of an international team recommending standards for the DNA barcoding of land plants, a step they hope will lead to a universal system for identifying over 400,000 species, ...

DNA 'barcode' for tropical trees

Nov 04, 2009

In foods, soil samples or customs checks, plant fragments sometimes need to be quickly identified. The use of DNA “barcodes” to itemize plant biodiversity was proposed during the 1992 Rio de Janeiro Summit. ...

Global barcode project to scan plants in the wild

Dec 16, 2009

(PhysOrg.com) -- A cheap and fast method of identifying the world's most important plants in the wild could soon be possible, thanks to a global project involving the University of Adelaide.

Building a digital library for life on Earth

Sep 24, 2010

The largest biodiversity genomics initiative ever undertaken - an international effort to build a digital identification system for all life on Earth - will be officially activated this week.

Recommended for you

Being sheepish about climate adaptation

7 hours ago

For thousands of years, man has domesticated animals, selecting the best traits possible for survival. Now, livestock such as sheep offer an intriguing animal to examine adaptation to climate change, with a genetic legacy ...

Turning winery waste into biofuels

19 hours ago

Researchers at Swinburne University of Technology have developed a technique for converting winery waste into compounds that could have potential value as biofuels or medicines.

User comments : 0