Study finds faster, cheaper way to cool electronic devices

Apr 09, 2012

A North Carolina State University researcher has developed a more efficient, less expensive way of cooling electronic devices – particularly devices that generate a lot of heat, such as lasers and power devices.

The technique uses a "heat spreader" made of a copper-graphene , which is attached to the electronic device using an indium-graphene interface film "Both the copper-graphene and indium-graphene have higher thermal conductivity, allowing the device to cool efficiently," says Dr. Jag Kasichainula, an associate professor of materials science and engineering at NC State and author of a paper on the research. Thermal conductivity is the rate at which a material conducts heat.

In fact, Kasichainula found that the copper-graphene film's allows it to cool approximately 25 percent faster than pure copper, which is what most devices currently use.

Dissipating heat from is important, because the devices become unreliable when they become too hot.

The paper also lays out the manufacturing process for creating the copper-graphene composite, using an electrochemical deposition process. "The copper-graphene composite is also low-cost and easy to produce," Kasichainula says. "Copper is expensive, so replacing some of the with graphene actually lowers the overall cost."

Explore further: Researchers make nanostructured carbon using the waste product sawdust

More information: The paper, "Thermal Conductivity of Copper-Graphene Composite Films Synthesized by Electrochemical Deposition with Exfoliated Graphene Platelets," is published in Metallurgical and Materials Transactions B.

Related Stories

Graphene is thinnest known anti-corrosion coating

Feb 22, 2012

New research has established the "miracle material" called graphene as the world's thinnest known coating for protecting metals against corrosion. Their study on this potential new use of graphene appears ...

Self-cooling observed in graphene electronics

Apr 03, 2011

With the first observation of thermoelectric effects at graphene contacts, University of Illinois researchers found that graphene transistors have a nanoscale cooling effect that reduces their temperature.

Hydrogen may be key to growth of high-quality graphene

Jul 18, 2011

A new approach to growing graphene greatly reduces problems that have plagued researchers in the past and clears a path to the crystalline form of graphite's use in sophisticated electronic devices of tomorrow.

Recommended for you

Nanoparticle technology triples the production of biogas

Oct 22, 2014

Researchers of the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a Severo Ochoa Centre of Excellence, and the Universitat Autònoma de Barcelona (UAB) have developed the new BiogàsPlus, a technology which allows ...

Research unlocks potential of super-compound

Oct 22, 2014

Researchers at The University of Western Australia's have discovered that nano-sized fragments of graphene - sheets of pure carbon - can speed up the rate of chemical reactions.

User comments : 0