Researchers take steps toward fast, low-cost DNA sequencing device

Apr 24, 2012

Researchers at Oak Ridge National Laboratory and Yale University have developed a new concept for use in a high-speed genomic sequencing device that may have the potential to substantially drive down costs.

"The low cost--if it can be achieved--would enable genomic sequencing to be used in everyday clinical practice for medical treatments and preventions," said Predrag Krstic, project director and former ORNL physicist now at the University of Tennessee-ORNL Joint Institute for Computational Sciences.

The research is part of a nearly decade-long drive by the National Institute of the National Institutes of Health to support the science needed to bring the cost of sequencing a human genome down to $1,000.

ORNL and Yale University researchers have created nanopores, or extremely of water, with a radio-frequency electric field capable of trapping segments of DNA and other biomolecules.

In a paper published in the scientific journal Small, titled, "Tunable Aqueous Virtual Micropore," ORNL and Yale University researchers used theory and computation, validated by experiments, to prove that a charged micro or nano particle, such as a , can be confined in an "aqueous virtual pore." The water provides a stable environment for while the virtual "walls" allow DNA to move through the without interacting with physical walls.

As an added advantage, scientists can control the size and stability of a virtual nanopore by external electric fields, something they cannot do with a physical nanopore.

"As a single DNA polymer is translocated through a synthetic nanopore, we use the physical detection of single molecules to read that identify DNA bases," Krstic said.

To help control and localize DNA, ORNL and Yale scientists created the aqueous nanopore embedded in water based on a linear Paul trap – a device that traps particles in an oscillating electric field – and experimentally proved its trapping functionality.

There were some doubts that a charged micro or nano particle could be confined by the quadrupole oscillating of the Paul trap when filled by aqueous solvent, but ORNL computation and Yale experiments prove that water actually helps stabilize trapping mechanisms, making sequencing methods more feasible.

Explore further: Nanocontainers for nanocargo: Delivering genes and proteins for cellular imaging, genetic medicine and cancer therapy

Related Stories

Nanopore Sequencing Could Slash DNA Analysis Costs

Mar 27, 2009

(PhysOrg.com) -- Over the past 5 years, researchers have been exploring the use of nanoscale pores as nucleic acid sequencing tools. In theory, such pores should generate a unique response characteristic of each of the four ...

Harvard's graphene DNA sequencing licensed

Mar 11, 2011

Oxford Nanopore Technologies today announced an exclusive agreement with Harvard University's Office of Technology Development for the development of graphene for DNA sequencing. Graphene is a robust, single ...

Recommended for you

Twisted graphene chills out

Sep 17, 2014

(Phys.org) —When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown.

Researchers use liquid inks to create better solar cells

Sep 17, 2014

(Phys.org) —The basic function of solar cells is to harvest sunlight and turn it into electricity. Thus, it is critically important that the film that collects the light on the surface of the cell is designed ...

User comments : 0