Researchers take steps toward fast, low-cost DNA sequencing device

April 24, 2012

Researchers at Oak Ridge National Laboratory and Yale University have developed a new concept for use in a high-speed genomic sequencing device that may have the potential to substantially drive down costs.

"The low cost--if it can be achieved--would enable genomic sequencing to be used in everyday clinical practice for medical treatments and preventions," said Predrag Krstic, project director and former ORNL physicist now at the University of Tennessee-ORNL Joint Institute for Computational Sciences.

The research is part of a nearly decade-long drive by the National Institute of the National Institutes of Health to support the science needed to bring the cost of sequencing a human genome down to $1,000.

ORNL and Yale University researchers have created nanopores, or extremely of water, with a radio-frequency electric field capable of trapping segments of DNA and other biomolecules.

In a paper published in the scientific journal Small, titled, "Tunable Aqueous Virtual Micropore," ORNL and Yale University researchers used theory and computation, validated by experiments, to prove that a charged micro or nano particle, such as a , can be confined in an "aqueous virtual pore." The water provides a stable environment for while the virtual "walls" allow DNA to move through the without interacting with physical walls.

As an added advantage, scientists can control the size and stability of a virtual nanopore by external electric fields, something they cannot do with a physical nanopore.

"As a single DNA polymer is translocated through a synthetic nanopore, we use the physical detection of single molecules to read that identify DNA bases," Krstic said.

To help control and localize DNA, ORNL and Yale scientists created the aqueous nanopore embedded in water based on a linear Paul trap – a device that traps particles in an oscillating electric field – and experimentally proved its trapping functionality.

There were some doubts that a charged micro or nano particle could be confined by the quadrupole oscillating of the Paul trap when filled by aqueous solvent, but ORNL computation and Yale experiments prove that water actually helps stabilize trapping mechanisms, making sequencing methods more feasible.

Explore further: Nanopore Sequencing Could Slash DNA Analysis Costs

Related Stories

Nanopore Sequencing Could Slash DNA Analysis Costs

March 27, 2009

(PhysOrg.com) -- Over the past 5 years, researchers have been exploring the use of nanoscale pores as nucleic acid sequencing tools. In theory, such pores should generate a unique response characteristic of each of the four ...

Harvard's graphene DNA sequencing licensed

March 11, 2011

Oxford Nanopore Technologies today announced an exclusive agreement with Harvard University's Office of Technology Development for the development of graphene for DNA sequencing. Graphene is a robust, single atom thick 'honeycomb' ...

Recommended for you

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.