FANCM plays key role in inheritance

Apr 30, 2012
This image shows the leptotene stage during the meiosis of germ cells in thale cress: halving of the number of the chromosomes is accompanied by a recombination of hereditary information. Credit: Botanical Institute II, KIT

Scientists of KIT and the University of Birmingham have identified relevant new functions of a gene that plays a crucial role in Fanconi anemia, a life-threatening disease.

The FANCM gene is known to be important for the stability of the genome. Now, the researchers found that FANCM also plays a key role in the recombination of genetic information during inheritance. For their studies, the scientists used thale cress as a . Their results are newly published by the journal The .

Stability of the genome is ensured by a series of mechanisms. If these are lacking, the risk of cancer and other severe diseases is increased. Fanconi anemia is a recessive associated with dysplasia, degeneration of bone marrow, and an increased risk of leukemia and tumors. FANCM is one of the genes responsible for Fanconi anemia. So far, the deactivation of FANCM has been known to lead to genome instability in , i.e. body cells that are not involved in reproduction. "We have now proven that FANCM does not only ensure genome stability in somatic cells, but also controls inheritance," explains Dr. Alexander Knoll from the Botanical Institute II of KIT, first author of the publication in The Plant Cell.

According to the findings, FANCM plays a key role in the combination of paternal and maternal traits in the . The gene can be detected in nearly all organisms, from bacteria to yeast to plants to man. For their studies, the researchers from Karlsruhe and Birmingham used thale cress (Arabidopsis thaliana) as a . The genome of this plant belonging to the family of cruciferous plants is relatively small and completely sequenced. The researchers found that the FANCM-homologous gene At-FANCM ensures ordered distribution and recombination of the genetic material during the meiosis of the germ cells in thale cress. "These findings cannot only be applied in biomedicine, but also in plant breeding in order to specifically improve the properties of usable crops," explains the Head of the Botanical Institute II of KIT, Professor Holger Puchta.

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: Plant Cell, DOI: 10.1105/tpc.112.096644

Related Stories

Precise molecular surgery in the plant genome

Apr 24, 2012

Crop plants have always been adapted to the needs of man by breeding for them to carry more fruit, survive droughts, or resist pests. Green biotechnology now adds new tools to the classical breeding methods ...

Evolution can cause a rapid reduction in genome size

Apr 21, 2011

(PhysOrg.com) -- It would appear reasonable to assume that two closely related plant species would have similar genetic blueprints. However, scientists from the Max Planck Institute for Developmental Biology ...

Sequencing thousand and one genomes

Sep 29, 2008

(PhysOrg.com) -- Researchers at the Max Planck Institute for Developmental Biology in Tuebingen, Germany, reported the completion of the first genomes of wild strains of the flowering plant Arabidopsis thaliana. ...

Plant hormone auxin triggers a genetic switch

Apr 18, 2011

(PhysOrg.com) -- During the development of organisms, a particular event repeatedly occurs: a signal appears temporarily, but the processes it triggers must be maintained – for example, when the fate ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.