Ecologists explore new explanation for plant productivity

Apr 11, 2012 by Mary-Ann Muffoletto
Utah State University ecologists collect the biomass on each species in experimental plant communities. The researchers developed and tested a novel biomass-specific, multi-species model to examine the role of plant-soil feedbacks in diversity-productivity relationships. (USU photo)

(Phys.org) -- Current ecological thought suggests the more diverse a plant community is, the more productive it is. But scientists don’t fully understand why this is so.

“We’re exploring the possibility that plant-soil feedbacks may also be a critical but underappreciated factor in plant community development,” says Andrew Kulmatiski, assistant research professor in Utah State University’s Ecology Center and Department of , Soils and Climate.

Understanding the mechanisms behind productivity has important implications for agriculture, biofuel production and plant community management, he says.

With USU Ecology Center colleagues Karen Beard, associate professor in USU’s Department of Wildland Resources and instructor Justin Heavilin of USU’s Department of Mathematics and Statistics, Kulmatiski published findings in the April 11, 2012 online “FirstCite” edition of , a publication of the United Kingdom’s academy of sciences. The team’s research is supported by the Utah Agricultural Experiment Station and the National Science Foundation.

“Current explanations suggest plant productivity increases with diversity because more diverse communities can exploit a wider range of resources and because a diverse community is more likely to contain highly productive species,” Kulmatiski says. “Soil pathogens typically decrease productivity in monocultures and we think this may also explain why more diverse communities are more productive.”

To test their hypothesis, the team developed and tested a novel biomass-specific, multi-species model to examine the role of plant-soil feedbacks in diversity-productivity relationships.

“This allowed us to examine the effects of plant-soil feedbacks on and to examine these effects in plant communities with more than three plant species,” Kulmatiski says. “Neither of these kinds of experiments had been done previously.”

The team’s model successfully predicted how different plant species would develop in different plant communities.

“Our results provide conceptual and experimental support for the role of plant-soil feedbacks in diversity-productivity relationships,” Kulmatiski says.

Explore further: Thai Airways bans shark fin from cargo flights

Provided by Utah State University

3.8 /5 (5 votes)

Related Stories

New plant ecology study challenges conventional wisdom

Sep 26, 2011

(PhysOrg.com) -- An international team of 58 ecologists, including UC Davis researcher Louie Yang, has found that habitat productivity does not predict the quantity or diversity of plant species, as has been ...

Study links forest health to salmon populations

Mar 25, 2011

(PhysOrg.com) -- A new research paper written by Simon Fraser University biologists and published in the journal Science concludes that the abundance of salmon in spawning streams determines the diversity and productivity of pla ...

Soil bacteria plant bodyguards against fungal infections

May 12, 2011

With up to 33,000 ‘taxa’, plant roots are home to an unprecedentedly large diversity of bacteria. Some of these bacteria can function as a type of bodyguard for plants, protecting them against infection ...

Recommended for you

Brother of Hibiscus is found alive and well on Maui

15 hours ago

Most people are familiar with Hibiscus flowers- they are an iconic symbol of tropical resorts worldwide where they are commonly planted in the landscape. Some, like Hawaii's State Flower- Hibiscus brackenridgei- are en ...

Boat noise impacts development and survival of sea hares

18 hours ago

While previous studies have shown that marine noise can affect animal movement and communication, with unknown ecological consequences, scientists from the Universities of Bristol and Exeter and the École Pratique des Hautes ...

Classic Lewis Carroll character inspires new ecological model

Jul 30, 2014

Inspired by the Red Queen in Lewis Carroll's Through the Looking Glass, collaborators from the University of Illinois and National University of Singapore improved a 35-year-old ecology model to better understand how species ...

Saving seeds the right way can save the world's plants

Jul 30, 2014

Exotic pests, shrinking ranges and a changing climate threaten some of the world's most rare and ecologically important plants, and so conservationists establish seed collections to save the seeds in banks ...

User comments : 0