Connecting cilia: Cellular antennae help cells stick together

April 24, 2012

Primary cilia are hair-like structures which protrude from almost all mammalian cells. They are thought to be sensory and involved in sampling the cell's environment. New research, published in BioMed Central's open access journal Cilia, launched today, shows that cilia on cells in the retina and liver are able to make stable connections with each other - indicating that cilia not only are able to sense their environment but are also involved in cell communication.

Primary cilia are structurally and functionally very similar to eukaryotic flagella (motile tails used to propel microorganisms). For many decades it was thought that cilia on were primarily for movement, for example, cilia on respiratory cells drive mucous up and out of the airways by beating together, however it is now believed that they are also 'cellular antennae' - important for cell to cell communication.

In order to find out how these cilia could physically communicate Carolyn Ott and Jennifer Lippincott-Schwartz, from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, examined primary cilia from the retina, bile duct and in . In all cases, cilia between formed long-lasting contacts with each other, something that has never been observed before. The adhesions between cilia lasted hours or days and were dependent on interactions between glycoproteins (proteins with a attached).

Jennifer Lippincott-Schwartz explained, "A number of human genetic diseases, including Bardet-Biedl syndrome, nephronophthisis, Joubert, and Meckel-Gruber syndrome, are due to defects in ciliary trafficking and signaling. Our study suggests that cilia are active transmitters and seek out neighboring cells to communicate with. These newly discovered cilia-cilia contacts may be disrupted in ciliopathies, an intriguing possibility that requires further investigation."

Explore further: Scientists study cilia -- microscopic hair

More information: Primary cilia utilize glycoprotein-dependent adhesion mechanisms to stabilize long-lasting cilia-cilia contacts Carolyn M Ott, Natalie Elia, Suh Young Jeong, Christine Insinna, Prabuddha Sengupta and Jennifer Lippincott-Schwartz, Cilia (in press)

Related Stories

Scientists study cilia -- microscopic hair

May 5, 2006

Texas scientists studying microscopic hairs called cilia say they found an internal structure that's responsible for a cell's response to external signals.

Researchers identify new role for cilia protein in mitosis

April 4, 2011

Researchers at the University of Massachusetts Medical School have described a previously unknown role for the cilia protein IFT88 in mitosis, the process by which a dividing cell separates its chromosomes containing the ...

How cells' sensing hairs are made

June 8, 2011

(PhysOrg.com) -- Body cells detect signals that control their behavior through tiny hairs on the cell surface called cilia. Serious diseases and disorders can result when these cilia do not work properly. New research from ...

Recommended for you

Orangutan females prefer dominant, cheek-padded males

September 1, 2015

Unlike most mammals, mature male orangutans exhibit different facial characteristics: some develop large "cheek pads" on their faces; other males do not. A team of researchers studied the difference in reproductive success ...

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

Researchers unveil DNA-guided 3-D printing of human tissue

August 31, 2015

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.