Bioreactor redesign dramatically improves yield

Apr 18, 2012

Scientists explain why a microalgae bioreactor redesign provides an order-of-magnitude improvement over conventional cultivation methods.

Microalgae are single-cell plants that comprise nature's smallest and most efficient photosynthetic engines: all they need to thrive is water, light, and air. When bred under controlled conditions, their applications range from pharmaceuticals to to biofuels. Current microalgae breeding methods, however, perform far below the fundamental bounds allowed by the laws of nature. Scientists at Ben-Gurion University of the Negrev in Israel have identified strategies to improve algal yield. They describe their work in the American Institute of Physics' (AIP) journal .

The Ben-Gurion team created a that explains some of the principal observations obtained in novel bioreactors that are being designed and built by a separate group at the university, led by Amos Richmond. These bioreactors are essentially flat containers with transparent walls that can be illuminated by sunshine or artificial light. fed from the bottom mix the water so the algae cells move back and forth between the thin illuminated regions near the walls and the dark interior of the reactor, which results in cells being exposed to short light flashes.

These bioreactors produce biomass yields an order-of-magnitude greater than conventional cultivation methods. In their research the scientists explain that it's critical to account for the unique interplay between physics and biology: Intrinsic time scales characteristic of photosynthesis can be synchronized with the flow patterns and illumination of the bioreactors in which the algae are grown. The accompanying dramatic improvement in biomass yield may one day turn microalgae into an economically viable source of renewable energy.

Explore further: Neutron tomography technique reveals phase fractions of crystalline materials in 3-dimensions

More information: "Physics of Ultra-high Bioproductivity in Algal Photobioreactors" by Efrat Greewald et al. is published in Applied Physics Letters.

add to favorites email to friend print save as pdf

Related Stories

'Green' energy from algae

Aug 06, 2009

In view of the shortage of petrochemical resources and climate change, development of CO2-neutral sustainable fuels is one of the most urgent challenges of our times. Energy plants like rape or oil palm a ...

Microalgae could be Texas' next big cash crop

Jul 06, 2011

Just as corn and peanuts stunned the world decades ago with their then-newly discovered multi-beneficial uses and applications, Texas AgriLife Research scientists in Corpus Christi think microalgae holds even more promise.

Rare toxic algae identified

May 11, 2010

Scientists have identified an unusual species of pathogenic algae that causes human skin infections, described in a new study in the International Journal of Systematic and Evolutionary Microbiology. The finding should improv ...

Recommended for you

50-foot-wide Muon g-2 electromagnet installed at Fermilab

7 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

Spin-based electronics: New material successfully tested

Jul 30, 2014

Spintronics is an emerging field of electronics, where devices work by manipulating the spin of electrons rather than the current generated by their motion. This field can offer significant advantages to computer technology. ...

User comments : 0